
Proceedings FOI-2015

Workshop on Foundations of

Informatics

Institute of Mathematics and Computer Science

August 24-29, 2015, Chisinau, Moldova

CZU 004(082)

W 83

Copyright © Institute of Mathematics and Computer Science,

Academy of Sciences of Moldova, 2015.
All rights reserved.

INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCE
5, Academiei street, Chisinau, Republic of Moldova, MD 2028
Tel: (373 22) 72-59-82, Fax: (373 22) 73-80-27,
E-mail: imam@math.md
WEB address: http://www.math.md

Editors: Prof. S.Cojocaru, Prof. C.Gaindric.

Authors are fully responsible for the content of their papers.

Descrierea CIP a Camerei Naţionale a Cărţii

 Workshop on Foundations of Informatics: Proceedings FOI-
2015, August 24-29, 2015, Chişinău/Inst. of Mathematics and Computer
Science, Acad. of Sciences of Moldova; ed.: S. Cojocaru, C. Gaindric. –
Chişinău: Institut of Mathematics and Computer Science, 2015 (Tipogr.
"Valinex SRL"). – 453 p.
 Bibliogr. la sfârşitul art. – 100 ex.
 ISBN 978-9975-4237-3-1.

004(082)

ISBN 978-9975-4237-3-1

This issue is supported by the Information Society Development Institute

Part 1

Theory of computing

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Structuring of Specification Modules∗

(Invited paper)

Răzvan Diaconescu

Abstract

In this paper we first give a brief overview of the current status
of modularisation for formal specifications and then we discuss a
series of recent developments including parameter instantiation
with sharing and module systems for behavioural specifications.

1 A Brief Introduction to Structuring of Spec-

ification Modules

The field of formal specification and verification of software and hard-
ware systems is without alternative in safety-critical or security areas
where one cannot take the risk of failure. Moreover formal specifica-
tions are crucial in ensuring a smooth development of large software
systems as well as their evolution and maintainability. A special class of
formal methods is given by the logic and algebraic based specifications
languages. These support specification and verification methodologies
that are rigorously backed up by formal logical systems, often display
algebraic features that smoothen up significantly the verification pro-
cess by integrating techniques with good computational properties such
as rewriting. Modern algebraic specification systems include CASL [1],
CafeOBJ [10], Maude [6], Specware [18], etc. Heterogeneous environ-
ments [10, 21] constitute a recent integrating trend in logic-based formal
specification that provides a very flexible approach when choosing the

c©2015 by Răzvan Diaconescu
∗This work has been supported by a grant of the Romanian National Authority

for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-

0439.

4

Structuring Specification Modules

appropriate language and formalism. The theoretical infrastructure de-
veloped over many decades of research in formal specification has been
exported also to other areas of computing science such as ontologies
(e.g. [19]) or declarative programming.

Modularisation is the only way to cope with the complexity of for-
mal specifications of large software systems. The work on specification
modules has a long history that starts with the specification language
Clear developed by Goguen and Burstall [5]. That laid general founding
principles for module systems of formal specifications that have been
realised by a multitude of subsequent languages and systems. However
the current modularisation theory and methodologies include many sub-
sequent developments that have been fuelled by the actual practice in
formal specification and by the design of new modern languages and
systems supporting this activity. Two quite major ideas have shaped
the current approaches to specification modules. The first is to abstract
away from the details of the logic underlying the actual specification
language. The module composition techniques are largely independent
of the logical formalism employed by the respective specification lan-
guage; in fact this important observation constituted the main idea
behind the language Clear and has triggered the conception of insti-
tution theory [14] as an abstract framework for modularisation. A
second important idea envisaged in many works (e.g. [26, 2, 27], etc.)
is to have a core set of specification building operators, with a clearly
defined semantics, that can be used to define composition operators
in actual module systems. These core specification building operators
include module sum (or aggregation), renaming and information hid-

ing. When the actual specification language provides tight semantics
capabilities, then an initial or final semantics operator is also typically
included. However occasionally (see [8]) these specification building
operators do not suffice, therefore other operators have also to be con-
sidered. The recent work [7] develops modularisation theory in a way
that is independent of any choice of specification building operators;
for this another abstraction layer is introduced.

5

Răzvan Diaconescu

2 Genericity and Sharing

Generic or parameterised modules represent one of the most important
module composition techniques because they can be (re)used in vari-
ous ways by appropriate instantiations of their parameters. In simple
terms, a parameterised module (denoted SP(P)) can be regarded as
a module import P → SP, with P being its parameter and SP being
its body. Instantiation of parameterised modules is performed through
interpretations of their parameters. In the specification literature they
are usually called views and they are syntactic mappings v : P → SP1

that satisfy two conditions:

1. they match consistently the signature of the parameter P to the
signature of the value SP1 (which is also a specification module);
technically this amounts to the fact that v is a signature mor-

phism; and

2. any implementation1 of SP1 has to be an implementation of the
parameter P via the interpretation of the syntactic entities given
by v.

Given a parameterised module SP(P) and a view v : P → SP1 the
instance SP(P ⇐ v) is commonly defined by the using the pushout

technique (cf. [5, 27], etc.) from category theory [20], which informally
can be explained as an extended form of union.

P //

v

��

SP

��

SP1
// SP(P ⇐ v)

(1)

While this is the traditional approach to parameter instantiation which
is widely employed by actual specification formalisms (e.g. [5, 1, 10, 6],
etc.), it still raises several technical issues of important methodological
significance and that can be summarised as follows:

1Mathematically speaking, ‘implementations’ are treated as models or interpre-

tations in the underlying logic.

6

Structuring Specification Modules

1. Since the pushout construction is unique only up to isomorphic
renaming, actual implementations of module systems involving
parameters provide ad-hoc constructions for the results of param-
eter instantiations. But how can we ensure in general that there
exists an instantiation such that SP1 → SP(P ⇐ v) behaves like
an import, and moreover would this be uniquely defined?

2. In order to avoid technical complications the actual specification
systems commonly dismiss the sharing between the body (SP)
and the instance (SP1), a situation that in practice constitutes a
real restriction, as for example it may lead to duplication of the
same data.

3. In the case of multiple parameters, for example SP(P1, P2), we
can instantiate them sequentially (first (SP(P1 ⇐ v1)(P2) and
next SP(P1 ⇐ v1)(P2 ⇐ v2), or the other way around) or in
parallel by regarding SP as parameterised by a single parameter,
SP(P1 + P2 ⇐ v1 + v2). Are the two sequential instantiations
and the parallel one equivalent methods in the sense of yielding
isomorphic results?

The main technicalities involved in the answer to these questions in-
clude both a reshape of the definition of parameter instantiation and a
general property of the signatures of the specification language formu-
lated. In brief the traditional pushout square (1) has to be redefined
as

P ∪ SP1

⊆
//

v∪1SP1

��

SP ∪ SP1

v′

��

SP1
i

// SP(P ⇐ v)

(2)

(where v ∪ 1SP1
implies that v is identity on the part shared between

P and SP1)
and the signatures have to enjoy the following general property: for
any signature morphism ϕ : Σ → Σ that is idempotent (i.e. such that
ϕ ◦ϕ = ϕ) and such that there exists a signature Σ0 such that Σ is the

7

Răzvan Diaconescu

disjoint union of Σ0 and ϕ(Σ)

Σ ∩ Ω

1©⊆

��

⊆

��

⊆
// Σ′ ∩ Ω

⊆

��

2© ⊆

��

Σ

3©

⊆
//

ϕ

��

Σ′

ϕ′

��

Σ = Σ0 + ϕ(Σ)
⊆

// Σ′

there exists a signature morphism ϕ′ : Σ′ → Σ′ such that 3© is pushout
and for any signature Ω such that 1© commutes then 2© commutes too.

In the works [8, 7, 28] the concepts of inclusion (⊆), union (∪),
intersection (∩), disjointness, etc. are treated abstractly within the
framework of ‘inclusion systems’ of [13]. In this way the solution pro-
posed is general and can be applied to almost all existing specification
formalisms (with the notable exception of behavioural specifications
discussed below). The required property above holds naturally for all
specification formalisms of interest, often in a stronger form than ac-
tually required (see [8, 28]). The generality of this solution implies
also that it can be employed also by new specification formalisms to be
defined in the future.

3 Module Systems for Behavioural Specifica-

tions

Modern algebraic specification theory and practice has extended the
traditional many-sorted algebra-based specification to several new
paradigms. One of the most promising is behavioural specification,
which originates from the work of Horst Reichel [22, 23] and can be
found in the literature under names such as hidden algebra [15, 16],
observational logic [3, 17], coherent hidden algebra [11] and hidden
logic [24]. Behavioural specification characterises how objects (and
systems) behave, not how they are implemented. This new form of
abstraction can be very powerful for the specification and verification

8

Structuring Specification Modules

of software systems since it naturally embeds other useful paradigms
such as concurrency, object-orientation, constraints, nondeterminism,
etc. (see [16] for details). In the tradition of algebraic specification,
the behavioural abstraction is achieved by using specification with hid-
den sorts and a behavioural concept of satisfaction based on the idea of
indistinguishability of states that are observationally the same, which
also generalizes process algebra and transition systems (see [16]). An
important effort has been undertaken to develop languages and systems
supporting the behavioural extension of conventional or less conven-
tional algebraic specification techniques; these include CafeOBJ [10, 12],
CIRC [25] and BOBJ [24]. In other situations, behavioural specifica-
tion, although not directly realized at the level of the language defini-
tion, is employed as a mere methodological device [4]. In all cases there
is the unavoidable need of a structuring mechanism for behavioural
specifications.

However the modularisation of behavioural specifications poses spe-
cific challenges with respect to the standard modularisation techniques.
Some important properties that in general are taken for granted do
not hold in the case of behavioural specifications, for example the ba-
sic operation of union (aggregation) of behavioural specifications is
only partial. The root cause of these problems lies in the ‘encapsula-
tion condition’ on the signature morphisms, which prohibits new be-
havioural operations on old hidden sorts (i.e. that correspond to sorts
of the source signature). Therefore the basic compositionality prop-
erties of behavioural specifications hold in a partial rather then total
algebra style form. For example (see [9]) the associativity of union of
behavioural specifications

(SP ∪ SP′) ∪ SP′′ = SP ∪ (SP′ ∪ SP′′)

means that either both members are defined and are equal semantically
or else that neither of them is defined.

In the case of the instantiation of parameterised behavioural speci-
fications the pushout square (1) is replaced with the following pushout

9

Răzvan Diaconescu

square:

P ∪ (SP ∩ SP1)
⊆

//

v∪id

��

SP

��

SP1
// SP′

1

(3)

when P ∪ SP1 is defined. When SP ∪ SP1 is defined too, (3) can be
replaced by the technically more convenient (2). However in this case
the condition underlying (2) is stronger than that of (3) (note that
according to [9] while unions of behavioural specifications are partial,
intersections are total).

References

[1] Edigio Astesiano, Michel Bidoit, Hélène Kirchner, Berndt Krieg-
Brückner, Peter Mosses, Don Sannella, and Andrzej Tarlecki.
CASL: The common algebraic specification language. Theoreti-

cal Computer Science, 286(2):153–196, 2002.

[2] Jan Bergstra, Jan Heering, and Paul Klint. Module algebra. Jour-
nal of the Association for Computing Machinery, 37(2):335–372,
1990.

[3] Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural
and abstractor specifications. Sci. Comput. Program., 25(2-3):149–
186, 1995.

[4] Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observa-
tional interpretation of CASL specifications. Mathematical Struc-

tures in Computer Science, 18(2):325–371, 2008.

[5] Rod Burstall and Joseph Goguen. The semantics of Clear, a speci-
fication language. In Dines Bjorner, editor, 1979 Copenhagen Win-

ter School on Abstract Software Specification, volume 86 of Lecture
Notes in Computer Science, pages 292–332. Springer, 1980.

10

Structuring Specification Modules

[6] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. All

About Maude - A High-Performance Logical Framework, volume
4350 of Lecture Notes in Computer Science. Springer, 2007.

[7] Răzvan Diaconescu. An axiomatic approach to structuring speci-
fications. Theoretical Computer Science, 433:20–42, 2012.

[8] Răzvan Diaconescu and Ionuţ Ţuţu. On the algebra of structured
specifications. Theoretical Computer Science, 412(28):3145–3174,
2011.

[9] Răzvan Diaconescu and Ionuţ Ţuţu. Foundations for structuring
behavioural specifications. Journal of Logical and Algebraic Meth-

ods in Programming, 83(3–4):319–338, 2014.

[10] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report:

The Language, Proof Techniques, and Methodologies for Object-

Oriented Algebraic Specification, volume 6 of AMAST Series in

Computing. World Scientific, 1998.

[11] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence
in object-oriented algebraic specification. Universal Computer Sci-

ence, 6(1):74–96, 2000. First version appeared as JAIST Technical
Report IS-RR-98-0017F, June 1998.

[12] Răzvan Diaconescu and Kokichi Futatsugi. Logical foundations of
CafeOBJ. Theoretical Computer Science, 285:289–318, 2002.

[13] Răzvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Log-
ical support for modularisation. In Gerard Huet and Gordon
Plotkin, editors, Logical Environments, pages 83–130. Cambridge,
1993. Proceedings of a Workshop held in Edinburgh, Scotland,
May 1991.

[14] Joseph Goguen and Rod Burstall. Institutions: Abstract model
theory for specification and programming. Journal of the Associ-

ation for Computing Machinery, 39(1):95–146, 1992.

11

Răzvan Diaconescu

[15] Joseph Goguen and Răzvan Diaconescu. Towards an algebraic se-
mantics for the object paradigm. In Hartmut Ehrig and Fernando
Orejas, editors, Recent Trends in Data Type Specification, volume
785 of Lecture Notes in Computer Science, pages 1–34. Springer,
1994.

[16] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical
Computer Science, 245(1):55–101, 2000.

[17] Rolf Hennicker and Michel Bidoit. Observational logic. In A. M.
Haeberer, editor, Algebraic Methodology and Software Technol-

ogy, number 1584 in LNCS, pages 263–277. Springer, 1999. Proc.
AMAST’99.

[18] Kestrel Institute. Specware system and documentation, 2003.
www.specware.org.

[19] Oliver Kutz, Till Mossakowski, and Dominik Lücke. Carnap,
Goguen, and the hyperontologies - logical pluralism and heteroge-
neous structuring in ontology design. Logica Universalis, 4(2):255–
333, 2010.

[20] Saunders Mac Lane. Categories for the Working Mathematician.
Springer, second edition, 1998.

[21] T. Mossakowski, C. Maeder, and K. Lütich. The heterogeneous
tool set. In Lecture Notes in Computer Science, volume 4424,
pages 519–522. 2007.

[22] Horst Reichel. Behavioural equivalence – a unifying concept for
initial and final specifications. In Proceedings, Third Hungarian

Computer Science Conference. Akademiai Kiado, 1981. Budapest.

[23] Horst Reichel. Initial Computability, Algebraic Specifications, and

Partial Algebras. Clarendon, 1987.

[24] Grigore Roşu. Hidden Logic. PhD thesis, University of California
at San Diego, 2000.

12

Structuring Specification Modules

[25] Grigore Roşu and Dorel Lucanu. Circular coinduction: A proof
theoretical foundation. In Alexander Kurz, Marina Lenisa, and
Andrzej Tarlecki, editors, Algebra and Coalgebra in Computer Sci-

ence, volume 5728 of Lecture Notes in Computer Science, pages
127–144, 2009.

[26] Donald Sannella and Andrzej Tarlecki. Specifications in an arbi-
trary institution. Information and Control, 76:165–210, 1988.

[27] Donald Sannella and Andrzej Tarlecki. Foundations of Algebraic

Specifications and Formal Software Development. Springer, 2012.

[28] Ionuţ Ţuţu. Parameterisation for abstract structured specifica-
tions. Theoretical Computer Science, 517:102–142, 2014.

Răzvan Diaconescu Received July 6, 2015

Simion Stoilow Institute of Mathematics of Romanian Academy

Romania

E–mail: Razvan.Diaconescu@imar.ro

13

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Small P Systems with Catalysts or Anti-Matter

Simulating Generalized Register Machines and

Generalized Counter Automata

Artiom Alhazov Rudolf Freund Petr Sośık

Abstract

In this paper we focus on two weak forms of cooperation in P
systems, namely, catalytic rules and matter/anti-matter annihila-
tion rules. These variants of P systems both are computationally
complete, while the corresponding rule complexity turns out to be
of special interest. For establishing considerably small universal
P systems in both cases, we found two suitable tools: generalized
register machines and generalized counter automata. Depending
on the features used in the different variants, we construct several
small universal P systems.

1 Introduction

Membrane systems with symbol objects are a theoretical framework
of parallel distributed multiset processing, for example, see [12, 13,
14]. While non-cooperative P systems are known to characterize the
regular languages, in case of unrestricted (even binary) cooperation,
showing computational completeness is straightforward, for example,
by simulating register machines. Hence, since many years researchers
have been interested in even weaker forms of cooperation.

A catalytic rule is a non-cooperative rule with an additional catalyst
on both the left side and the right side of the rule. Essentially, a catalyst
only inhibits parallelism of rules where it is indicated. The question
whether catalytic P systems are computationally complete (without
priorities or other additional features) has been open for a number of

c©2015 by A. Alhazov, R. Freund, P. Sosı́k

14

Small P Systems with Catalysts or Anti-Matter

years, being finally answered positively, moreover, even showing that
two catalysts suffice (or three for the purely catalytic systems), see [7].

In the variant with anti-matter objects, in addition to non-
cooperative rules, specific cooperative erasing is allowed, namely, of
two objects related by a bijection “object-antiobject”. Anti-matter in
P systems is a rather recent direction, for instance, see [1].

Small universal P systems have been investigated for a number of
years. The smallest ones are those with string objects and splicing rules
where even five rules suffice, see [5]. In the case of symbol objects, if
full cooperation is allowed, then 23 rules suffice, see [6], and only 16
are needed if in addition inhibitors are allowed, see [8].

In this paper, we give an overview on small universal P systems
using anti-matter or catalysts as in [4] and we even improve the results
established there for (purely) catalytic P systems, based on recent re-
sults obtained in [3] as well as in [16] and [17].

2 Definitions

We assume the reader to be familiar with the basic notions and concepts
from formal language theory, for example, see textbooks as [15]; for the
area of P systems we refer to [12, 13, 14] and to [18] for actual news.

2.1 Register Machines

Register machines are well-known universal devices for computing (gen-
erating or accepting) sets of (vectors of) natural numbers.

Definition 1 A register machine is a construct M = (m,B, l0, lh, P)
where

• m is the number of registers,

• P is the set of instructions bijectively labeled by elements of B,

• l0 ∈ B is the initial label, and

• lh ∈ B is the final label.

15

A. Alhazov, R. Freund, P. Sośık

The instructions of M can be of the following forms:

• p : (ADD (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.

Increase the value of register r by one, and non-deterministically

jump to instruction q or s.

• p : (SUB (r) , q, s), with p ∈ B \ {lh}, q, s ∈ B, 1 ≤ r ≤ m.

If the value of register r is not zero, then decrease the value of

register r by one (decrement case) and jump to instruction q,

otherwise jump to instruction s (zero-test case).

• lh : HALT .

Stop the execution of the register machine.

A configuration of a register machine is described by the contents

of each register and by the value of the current label, which indicates

the next instruction to be executed. M is called deterministic if all the

ADD-instructions are of the form p : (ADD (r) , q).

In the accepting case, a computation starts with the input of a
k-vector of natural numbers in its first k registers and by executing
the first instruction of P (labeled with l0); it terminates with reaching
the HALT -instruction. Without loss of generality, we may assume all
registers to be empty at the end of the computation.

A register machine MU is called universal, if, given the code of an
arbitrary register machine M , MU can simulate the computations of M
on any given input. We speak of strong universality, if both input and
output are given directly as numbers where as weak universality means
that both input and output are encoded by a recursive function f , e.g.,
f(n) = 2n; we also consider weak-strong universality with encoded
input, but unencoded output.

2.2 P Systems

In this paper, we will only consider membrane systems with the sim-
plest membrane structure µ = []1, i.e., with even omitting µ, we con-
sider a (catalytic) P system as a construct Π = (O,C,w1, R1) where O

16

Small P Systems with Catalysts or Anti-Matter

is the alphabet of objects, C ⊆ O is the set of catalysts, w1 the multiset
of objects present in the skin region at the beginning of a computation,
and R1 is a finite set of evolution rules, associated with the skin region.
In this paper we only use the maximally parallel derivation mode, i.e.,
in each derivation step we apply a non-extendable multiset of rules.

If a rule u → v has at least two objects in u, then it is called co-

operative, otherwise it is called non-cooperative. In catalytic P systems

we use non-cooperative as well as catalytic rules, which are of the form
ca → cv where c is a special object called catalyst, which never evolves
(this restriction can be relaxed), but it just assists object a to evolve to
the multiset v. In a purely catalytic P system we only allow catalytic
rules. If we allow catalysts to switch between different states, we speak
of multi-stable catalysts.

In P systems with anti-matter objects, each object a also has an
anti-matter object ā in O and, in addition to non-cooperative and cat-
alytic rules, matter/anti-matter annihilation rules aā → λ are allowed,
for instance, see [1].

In P systems with toxic objects, specific symbols are specified as
being toxic; a computation can only be continued by a non-extendable
multiset of rules which does not leave any toxic object idle. For more
details about toxic P systems, for example, see [2].

3 Small Universal Register Machines

The universal register machines with the smallest known number of
instructions are those constructed by I. Korec in [10]. For the standard
instruction set (ADD-instructions and SUB-instructions, not counting the
halting one), these are the strongly universal machine U22 and the
weakly universal machine U20, see Figure 1.

3.1 Generalized Register Machines

We often observe that the most efficient (in terms of rule complexity)
simulations of register machines by P systems do not use separate rules
for ADD-instructions, but perform them as a part of the rules simulating

17

A. Alhazov, R. Freund, P. Sośık

Start:

q1

zR1ZM

R7P
q3

R6P

q6

q4 z

R5ZM

q7

z R6ZM

R5P

q9

R1P

q12

q10

z
R7ZM

q13

z R6ZM

R6P

q33q14

z
R4ZM

Instruction reader

q16

z R5ZM

q23

z
R2ZM

q25

z R0ZM

q18

z R5ZM

q27

z
R3ZM

R0P

q29

q20

z R5ZM

R4P

q22

Decoder

R2P

q30

R3P

q31

q32

zR4ZM Stop.

Simulation

block
q23

z
R0ZM

q27

z
R2ZM

R0P

q30

R2P

q31

Simulation

block

Figure 1. The strongly universal register machine U22 (left) and the
simulation block of the weakly universal register machine U20 (right).

SUB-instructions. Hence, we recall from [4] the following generalization
of register machines, as a tool for such simulations.

The model of generalized register machines has only instructions of
one type except the halt instruction, i.e., generalized SUB-instructions
of the form j : (SUB(r), A−(j)k,A0(j)l) where j, k, l ∈ B are instruction
labels and A−(j), A0(j) are (possibly empty) strings of increment com-
mands (sub-instructions) ADD(j′). Clearly, a standard register machine
(with ADD-instructions and SUB-instructions) can be obtained from a
generalized one, simply by introducing intermediate states, see [4] for
additional remarks.

3.2 With Multiple Registers

Below we present the (rules for the) strongly universal register machine
U22 of Korec, see [10] and Figure 1, left, in the form of a generalized
register machine:

18

Small P Systems with Catalysts or Anti-Matter

q1 : (SUB(1), ADD(7)q1, ADD(6)q4), q16 : (SUB(5), q18, q23),
q4 : (SUB(5), ADD(6)q4, q7), q18 : (SUB(5), q20, q27),
q7 : (SUB(6), ADD(5)q10, q4), q23 : (SUB(2), q32, q25),
q10 : (SUB(7), ADD(1)q7, q13), q25 : (SUB(0), q1, q32),
q13 : (SUB(6), ADD(6)q14, q1), q27 : (SUB(3), q32, ADD(0)q1),
q14 : (SUB(4), q1, q16), q32 : (SUB(4), q1, qh),
q20 : (SUB(5), ADD(4)q16, ADD(2)ADD(3)q32).

In the generalized register machine form of the weakly universal
register machine U20 of Korec, see [10], q25 is no longer present, and
instructions q20, q23 and q27 are different, see Figure 1, right, and reg-
ister 3 is not needed any more:

q20 : (SUB(5), ADD(4)q16), q23 : (SUB(0), q32, q1), q27 : (SUB(2), q32, q1).

Remark 1 Sometimes, also for technical reasons, we want to produce

the output in a register which only has increment instructions associ-

ated to it, and have all other registers empty in the end. Unfortunately,

these technical details are not fulfilled by the (strongly or weakly) uni-

versal register machines constructed by Korec in [10]: the result is ob-

tained in register 0, a register allowing for SUB-instructions, and, due to

the specific features of the register machines simulated by the universal

Korec machines, (only) the registers 1 and 6 are not empty. Therefore,

the last instruction q32 can be replaced by the following ones, with reg-

ister 8 being the new output register; we can omit the right column and

already take q35 as the halting state if “cleaning” is not needed:

q32 : (SUB(4), q1, q34), q35 : (SUB(1), q35, q36),
q34 : (SUB(0), ADD(8)q34, q35), q36 : (SUB(6), q36, qh).

3.3 With Two Decrementable Registers

In this subsection we discuss how to reduce the number of registers to
two, possibly not counting an extra increment-only register. It is well
known, e.g., see [11], that the computations of any m-register machine

19

A. Alhazov, R. Freund, P. Sośık

can be simulated by a 2-register machine, via exponential encoding.
Indeed, if we take the first m prime numbers pi, 1 ≤ i ≤ m, the
values xi of the registers i, 1 ≤ i ≤ m, can be encoded in any of the
first two registers as the single number p1

x1 . . . pm
xm . Then, ADD(r)

is simulated by multiplying the value of the first register by pr, and
SUB(r) is simulated by trying to divide the value of the first register by
pr; if the division is successful, the decrement transition is made, and
otherwise, the value is restored, and the zero-test transition is made.

In the following, we analyze the simulation blocks mentioned above
and represent the obtained 2-register machine in the generalized regis-
ter machine form, following the constructions given in [11]:
– Instruction j : (ADD(r), k) is simulated by the two generalized SUB-
instructions j : (SUB(1), (ADD(2))pr j, j′) and j′ : (SUB(2), ADD(1)j′, k).

– Instruction j : (SUB(r), k, l) is simulated by the pr + 2 generalized
SUB-instructions

j : (SUB(1), j1, j
′),

jn : (SUB(1), jn+1, (ADD(1))
n j′′), for 1 ≤ n ≤ pr − 2,

jn : (SUB(1), ADD(2)j, (ADD(1))n j′′), for n = pr − 1,
j′ : (SUB(2), ADD(1)j′, k),
j′′ : (SUB(2), (ADD(1))n j′′, l), for n = pr.

In the course of the analysis of the number of uses of decrements,
the assignment of prime numbers to registers was chosen for U22: The
conditional decrement of register 5 happens 4 times, the conditional
decrements of registers 4 and 6 happen twice each, and the conditional
decrement of any other register happens once. Register 5 is represented
by powers of 2, registers 6 and 4 by powers of 3 and 5 as well as registers
0, 1, 2, 7, and 3 by powers of 7, 11, 13, 17, and 19, respectively. We
remark that we use a smaller prime for R6 than for R4 because the
former is incremented twice and the latter is incremented only once in
the underlying Korec machine, which, compared to the opposite choice
leads to saving two ADD-instructions, which might be an interesting
feature in another context, although in the present paper we are not
concerned about that. We used the largest of the first 8 primes for
R3 because R3, besides being one of the least-used registers here, is

20

Small P Systems with Catalysts or Anti-Matter

no longer used in the weakly universal Korec machine U20 considered
next. Moreover, a smaller prime is used for R0 than for R1 and R2,
because R0 is also involved in the decoding phase discussed below.

In [4] the rule complexity of this reduction was improved as follows.
It was noted that the recopying for increment and zero-test usually can
be avoided by assigning different “master registers” to different states.
The word “usually” means whenever the master register is changed
after increment and zero-test, but is not changed after a decrement.

Hence, now the following allocation of master registers is chosen:

Register 1: q1, q6, q9, q12, q33, q18, q22, q27.

Register 2: q3, q4, q7, q10, q13, q14, q16, q20, q23, q25, q32, qh.

Another observation that we use to save even more instructions
is the following: if an increment instruction has a unique entry point
which is a zero-test, then such an increment can be embedded into
the zero-test without using additional instructions. Clearly, the same
transformation can be applied to multiple consecutive increments. The
states q29, q30, and q31 do not appear in the register allocations above
because we have embedded them into the zero-tests of q27 and q20.

We proceed with evaluating the instruction complexity of the ob-
tained generalized register machine by states. With the register al-
location given above, recopying has been skipped for all transitions
except q13 → q1 and q23 → q32. The table below shows the numbers
of generalized register machine instructions associated with each gen-
eralized register machine instruction, and the numbers of generalized
register machine instructions associated with the states q13 and q23 are
underlined. The necessity of at least two recopyings can be argued
by inspecting the cycles q1 − q6 − q4 − q7 − q9 − q10 − q13 − q1 and
q23 − q25 − q32 − q23; these cycles do not have common nodes, and each
cycle needs at least one recopying to have the value in the original reg-
ister. This minimality has been further confirmed by computer search
in the space of possible allocations of registers to states, furthermore
showing the uniqueness of the optimal allocation modulo the symmetric
assignment.

21

A. Alhazov, R. Freund, P. Sośık

state q1 q3 q4 q6 q7 q9 q10 q12 q13 q33
instructions 12 1 3 1 4 1 18 1 5 1

state q14 q16 q18 q20 q22 q23 q25 q27 q32 qh
instructions 6 3 3 3 1 15 8 20 6 0

This gives a total of 112 instructions for a weakly universal general-
ized 2-register machine. To obtain weak-strong universality, the result
has to be decoded into a third increment-only register, which means
repeated division of the encoding by 7 with incrementing the new reg-
ister in each cycle, iterated until a remainder is obtained. In fact, this
means adding the following generalized register machine instructions:

qh : (SUB(2), h1, h7),
hi : (SUB(2), hi+1, h8), 1 ≤ i ≤ 5,
h6 : (SUB(2), ADD(1)ADD(3)qh, h8),
h7 : (SUB(1), ADD(2)h7, qh)

with h8 being the new halting state. The computation ends up with
empty register 2, but still some “garbage” in register 1, which can be
erased by taking an additional rule h8 : (SUB(1), h8, h9) and h9 as the
new halting state instead. Hence, in total this additional part costs
8 instructions for the decoding, plus an extra instruction to erase the
rest of the encoding, i.e., the instruction labeled by h8, resulting in the
overall value for the generalized register machine instructions of 121
(with “cleaning”) and 120 (without “cleaning”), respectively.

Yet for weak universality, several states and rules can be saved by
simulating the weakly universal machine U20 of Korec, see [10], instead
of the strongly universal register machine U22. The weakly universal
register machine U20 does not use register 3, so we no longer need to
carry out division by 19. The difference is only in the simulation block,
so only instructions associated with states q23 and q27 are affected, as
well as q30 and q31 work on different registers, which does not affect
the number of generalized instructions, and instructions q25 and q29
are no longer present. Like in case of the strongly universal register

22

Small P Systems with Catalysts or Anti-Matter

machine, we embed the instructions q30 and q31 into the preceding
zero-test of q20.

We leave the same assignment of prime numbers to the registers
and the same allocation of the main register, except that we reallocate
q23 to register 1 and that we no longer have q25. This leads to skip-
ping recopying for all transitions except for q13 → q1 and q16 → q23;
again, the associated numbers of instructions are underlined in the
table below. The necessity of at least two recopyings can be argued
by inspecting the cycles q1 − q6 − q4 − q7 − q9 − q10 − q13 − q1 and
q16 − q18 − q27 − q32 − q23 − q16; these cycles have no common nodes,
and each cycle needs at least one recopying to have the value in the
original register. This minimality has been further confirmed by com-
puter search in the space of possible allocations of registers to states,
furthermore again showing the uniqueness of the optimal allocation
modulo the symmetric assignment for the weakly universal generalized
register machine with embedded increments.

We have the following adjustment on the number of generalized
instructions; the numbers to the left of each arrow are replaced by the
numbers to the right of that arrow.

state q16 q23 q25 q27
instructions 3 → 4 15 → 8 8 → 0 20 → 14

After having saved 20 instructions in this way, only 112 − 20 = 92
generalized instructions remain.

3.4 Generalized Counter Automata

Generalized counter automata (GCAs for short) were introduced in [1]
and also used in [4] and [3] with slightly different restrictions because
of how they then were simulated by the corresponding P systems. The
reason to consider a generalization of counter automata is that some-
times the simulation costs (measured in the number of rules in the
description of a P system) of a composite instruction is the same as
that (or almost the same, but anyway less than the sum of those) for
simulating an elementary instruction.

23

A. Alhazov, R. Freund, P. Sośık

For a register machine M = (m,B, l0, lh, P) consider the more gen-
eral type of instructions i : (q,M−, N,M+, q

′) where q, q′ ∈ Q are states,
N ⊆ R is a set of registers, andM−,M+ are multisets of registers. Such
a register machine applies instruction i as follows: first, multiset M− is
subtracted from the register values (i.e., for each register j ∈ R, M−(j)
is subtracted from the contents of register j; if at least one resulting
value would be negative, the machine is blocked without producing
any result); second, the subset N of registers is checked to be zero (if
at least one of them is found to be non-zero, the machine is blocked
without producing any result); third, the multiset M+ is added to the
register values (i.e., for each register j ∈ R, M+(j) is added to the
contents of register j), and finally the state changes to q′.

The work of such a register machine, now also called a general-

ized counter automaton and written M = (m,B, q1, qh, P), consists of
derivation steps applying instructions, chosen in a non-deterministic
way, associated with the current state. The computation starts in
the initial state q1, and we say that it halts if the final state qh has
been reached (which replaces the condition of reaching the final HALT-
instruction labeled by lh).

We start by presenting the small universal antiport P systems with
inhibitors from [8]; let us call it GCA 1.

1 : (q1, 〈1〉, {}, 〈7〉, q1), 9 : (q10, 〈6, 5〉, {7, 4}, 〈〉, q18),
2 : (q1, 〈〉, {1}, 〈6〉, q4), 10 : (q18), 〈5

3〉, {}, 〈4〉, q18),
3 : (q4, 〈5〉, {}, 〈6〉, q4), 11 : (q18, 〈〉, {5, 3}, 〈0〉, q1),
4 : (q4, 〈6〉, {5}, 〈5〉, q10), 12 : (q18, 〈5

2, 0〉, {5, 2}, 〈〉, q1),
5 : (q10, 〈7, 6〉, {}, 〈1, 5〉, q10), 13 : (q18, 〈5

2, 2〉, {5}, 〈〉, q1),
6 : (q10, 〈7〉, {6}, 〈1〉, q4), 14 : (q18, 〈5

2〉, {5, 2, 0}, 〈〉, q1)
7 : (q10, 〈〉, {6, 7}, 〈〉, q1), 15 : (q18, 〈3, 4〉, {5}, 〈〉, q1),
8 : (q10, 〈6, 4〉, {7}, 〈〉, q1), 16 : (q18, 〈5, 4〉, {5}, 〈2, 3〉, q1).

We now present a few variations of GCA 1, which have more instruc-
tions, but satisfy certain requirements that make them more suitable
for a simulation by specific P systems.

For the variant to be simulated by anti-matter P systems, we require
that for any instruction, M− does not overlap with M+; note that

24

Small P Systems with Catalysts or Anti-Matter

this condition is already fulfilled by GCA 1. Moreover, we note that,
as it will be shown later, if M− does not overlap with N , then the
simulation (in terms of the number of instructions) is more efficient,
but otherwise the simulation is still more efficient than in the case of
splitting such an instruction into two instructions and simulating these
two. Another requirement, due to the technicalities of the simulation,
is that the halting must be in a state with no associated instructions
(unlike in GCA 1, which halts in q18 if no instruction is applicable,
its straightforward simulation would non-deterministically choose an
instruction to simulate and fail, entering an infinite loop). The solution
is to replace the last two rules with the following ones; let us call this
resulting automaton GCA 2:

15 : (q18, 〈3〉, {5}, 〈〉, q32), 16 : (q18, 〈5〉, {5}, 〈2, 3〉, q32),
17 : (q32, 〈4〉, {}, 〈〉, q1), 18 : (q32, 〈〉, {4}, 〈〉, qh).

For the simulation with many catalysts, we need different require-
ments. However, also in this case we need that the GCA halts in a state
with no associated instructions, so we take GCA 2 as the basis. While
it no longer matters whether M− and N are disjoint, we require that
M+ does not overlap with either M− or N . To fulfill this condition,
we take GCA 2 and replace instruction 4 by new instructions 4 and 4′

below. Let us call the result GCA 3. Moreover, for technical reasons,
we have to produce the output in a register that only has increment
instructions associated to it, and have all other registers empty in the
end, hence, instruction 18 is replaced by instructions 18–21 below. Let
us call the result GCA 4.

4 : (q4, 〈6〉, {5}, 〈〉, q4′) 4′ : (q4′ , 〈〉, {}, 〈5〉, q10),
18 : (q32, 〈0〉, {4}, 〈8〉, q32), 20 : (q32, 〈6〉, {4}, 〈〉, q32),
19 : (q32, 〈1〉, {4}, 〈〉, q32), 21 : (q32, 〈〉, {0, 1, 4, 6}, 〈〉, qh).

Finally, for a simulation with multiple catalysts (in fact, 8), the
setting is more restricted. A coupling function fc is considered, which
is a bijective mapping from the set of registers to the same set, without
a fixed point. Not only is M− forbidden to contain more than one copy
of the same register, but we need all the sets supp(M−), fc(supp(M−)

25

A. Alhazov, R. Freund, P. Sośık

and N to be disjoint. After having carefully inspected the Korec ma-
chines and the resulting GCAs from [4], we decided to use the following
coupling function fc:

r : 0 1 2 3 4 5 6 7
fc(r) 6 5 7 4 3 1 0 2

While we keep instructions 1–9 identical to the ones listed above,
the rest of instructions is presented below. We call the result GCA 5 (in
[3] such a variant of counter automata is called “weakly generalized”).

10 : (q18, 〈5〉, {}, 〈〉, q20), 14 : (q16, 〈〉, {0, 2, 5}, 〈〉, q32),
10′ : (q20, 〈5〉, {}, 〈4〉, q16), 15 : (q18, 〈3〉, {5}, 〈〉, q32),
10′′ : (q16, 〈5〉, {}, 〈〉, q18), 16 : (q20, 〈〉, {5}, 〈2, 3〉, q32),
11 : (q18, 〈〉, {3, 5}, 〈0〉, q1), 17 : (q32, 〈4〉, {}, 〈〉, q1),
12 : (q16, 〈0〉, {2, 5}, 〈〉, q1), 18 : (q32, 〈〉, {4}, 〈〉, qh).
13 : (q16, 〈2〉, {5}, 〈〉, q32),

As in the case of multiple catalysts, the input must be moved to an
increment-only register, but for technical reasons the other registers do
not have to be cleaned by instructions of the GCA. Hence, we replace
instruction 18 by the instructions below, with λ being the new final
state, and we call the result GCA 6.

18 : (q32, 〈0〉, {4}, 〈8〉, q32), 18′ : (q32, 〈〉, {0, 4}, 〈〉, λ).

4 Antimatter

We now consider P systems with matter/anti-matter annihilation rules,
see [1].

Theorem 1 (see [1]) There exist small universal P systems with non-

cooperative rules and matter/anti-matter annihilation rules – with 9

annihilation rules and, in total, 53 rules in the accepting case, 59 rules

in the generating case, and 57 rules in the computing case.

26

Small P Systems with Catalysts or Anti-Matter

Π =
(

O, []
1
, q1, R1, 1, 1

)

where

O = {l2, l4, l6, l7, l8, l9, l11, l12, l
′
12, l13, l

′
13, l14, l

′
14, l15, l16, l

′
16, l18}

∪ {q1, q4, q10, q18, q32, qh} ∪ {a, a− | a ∈ {aj | 0 ≤ j ≤ 7} ∪ {#}}

and R1 contains the following rules:

q1 → q1a1
−a7,

q1 → l2a1
−, l2 → q4#a6,

q4 → q4a5
−a6,

q4 → l4a5
−, l4 → q10#a6

−a5,

q10 → q10a7
−a6

−a1a5,

q10 → l6a6
−, l6 → q4#a7

−a1,

q10 → l7a6
−a7

−, l7 → q1##,

q10 → l8a7
−, l8 → q1#a6

−a4
−,

q10 → l9a7
−a4

−, l9 → q18##a6
−a5

−,

q18 → q18a5
−a5

−a5
−a4,

q18 → l11a5
−a3

−, l11 → q1##a0,

q18 → l12a5
−a5

−a−
0
, l12 → l′7a5

−a2
−,

q18 → l13a5
−a5

−a2
−, l13 → l′

13
a5

−, l′
13

→ q1#,

q18 → l14a5
−a5

−, l14 → l′
14
a5

−a2
−a0

−, l′
14

→ q1###,

q18 → l15a5
−, l15 → q32#a3

−,

q18 → l16a5
−, l16 → l′

16
a5

−, l′
16

→ q32#a2a3,

q32 → q1a4
−,

q32 → l18a4
−, l18 → qh#,

#− → #4, # → #4, (##− → λ),
ar

− → #−, (arar
− → λ), 0 ≤ r ≤ 7.

Table 1. A small universal P system with anti-matter.

For a generalized counter automaton M = (m,B, q1, qh, P), let

k = 1 + max
i:(q,M−,N,M+,q′)∈P

(|M−|, |N |).

Common for different instructions ofM , we consider the following rules:

#− → #k, # → #k, ##− → λ, ar → #−, ara
−
r → λ, r ∈ R.

27

A. Alhazov, R. Freund, P. Sośık

We recall the main construction block: the simulation of instruction
i : (q,M−, N,M+, q

′) ∈ P . First we consider the case when M− and
N have no common elements, and moreover, we also assume that M−

does not overlap with M+.

q → li
∏

r∈N
ar

−, li → q′(
∏

r∈N
#)(

∏

r∈M−

ar
−)

∏

r∈M+

ar.

If the zero-test set N is empty, then the first step is a simple re-
naming and can be combined with the second step, yielding one rule

q → q′(
∏

r∈M−

ar
−)

∏

r∈M+

ar.

Clearly, if M− and N overlap, such an instruction can be broken
down into two subsequent instructions of the generalized counter au-
tomaton. However, a more efficient solution with only three rules exists:

q → li
∏

r∈M−

ar
−, li → l′i

∏

r∈N
ar

−, l′i → q(
∏

r∈N
#)

∏

r∈M+

ar.

The accepting case is shown by the construction in Table 1, simulat-
ing GCA 2.

5 One Catalyst and One Multi-Stable Catalyst

A conditional decrement is performed by letting the multi-stable cata-
lyst try to remove one register object, the states of the catalyst being
associated to the registers. In the next step, the “program object”
verifies whether the state of the multi-stable object was changed, and
the proper transition is modeled. Based on this idea, a few universal P
systems have been constructed in [4], depending on whether the strong
Korec machine, the weak one, or the one reduced to two working reg-
isters is simulated, whether the output is decoded, and whether the
feature of toxic objects is used, see the upper part of Table 4.

6 Multiple Catalysts

In this section, we do not limit the number of catalysts, but aim at a
small number of rules, based on the results recently established in [3].

28

Small P Systems with Catalysts or Anti-Matter

Π = (O,Σ, C = {cr | 0 ≤ r ≤ 7}, µ = []
1
, w1, R1, f = 1),

O = {or, dr, er | 0 ≤ r ≤ 7} ∪ {#, p10′ , p10′′ , p18′ , o8}

∪ {p′j | j ∈ {1, 3, 4, 5, 6, 8, 9, 10, 10′ , 10′′, 12, 13, 15, 17, 18′}}

∪ {pj | 1 ≤ j ≤ 18} ∪ {q1, q4, q10, q16, q18, q20, q32},

R1 = R ∪ {# → #} ∪ {cror → crdr, crdr → cr, crer → cr#,

cfc(r)er → cfc(r), dr → # | 0 ≤ r ≤ 7},

w1 = q1d(),

and the rules from the set R are listed below:

q1 → p1e1d(1), p1 → p′1d(1, 5), p′1 → q1d()o7,
q1 → p2d(1), p2 → q4d()o6,
q4 → p3e5d(5), p3 → p′

3
d(1, 5), p′

3
→ q4d()o6,

q4 → p4e6d(5, 6), p4 → p′
4
d(0, 6), p′

4
→ q10d()o5,

q10 → p5e6e7d(6, 7), p5 → p′
5
d(0, 2, 6, 7), p′

5
→ q10d()o1o5,

q10 → p6e7d(6, 7), p6 → p′
6
d(2, 7), p′

6
→ q4d()o1,

q10 → p7d6,7, p7 → q1d(),
q10 → p8e4e6d(4, 6, 7), p8 → p′8d(0, 3, 4, 6), p′8 → q1d(),
q10 → p9e5e6d(4, 5, 6, 7), p9 → p′9d(0, 1, 5, 6), p′9 → q18d(),
q18 → p10e5d(5), p10 → p′10d(1, 5), p′10 → q20d(),
q20 → p10′e5d(5), p10′ → p′

10′
d(1, 5), p′

10′
→ q16d(),

q16 → p10′′e5d(5), p10′′ → p′
10′′

d(1, 5), p′
10′′

→ q18d(),
q18 → p11d(3, 5), p11 → q1d()o0,
q16 → p12e0d(0, 2, 5), p12 → p′

12
d(0, 6), p′

12
→ q1d(),

q16 → p13e2d(2, 5), p13 → p′
13
d(2, 7), p′

13
→ q32d(),

q16 → p14d(0, 2, 5), p14 → q32d(),
q18 → p15e3d(3, 5), p15 → p′

15
d(3, 4), p′

15
→ q32d(),

q20 → p16d(5), p16 → q32d()o2o3,
q32 → p17e4d(4), p17 → p′17d(3, 4), p′17 → q1d(),
q32 → p18e0d(0, 4), p18 → p′18d(0, 6), p′18 → q32d()o8,
q32 → p18′d(0, 4), p18′ → d().

Table 2. A universal catalytic P system with 8 catalysts.

29

A. Alhazov, R. Freund, P. Sośık

Theorem 2 (see [3]) There exists a small universal catalytic P system

with 8 catalysts and 98 rules. Using toxic objects, the number of rules

can be reduced to 89.

Besides the rules associated to the instructions, we use rules

{# → #} ∪ {cror → crdr, crdr → cr, crer → cr#,

cfc(r)er → cfc(r), dr → # | 0 ≤ r ≤ 7}.

For a general instruction j of wGCA, j : (qi,M−, N,M+, qk) it suffices
to have the following three rules:

qi → pjEM−
Dm,M−,N , pj → pjD

′
m,M−

, pj → qkDmOM+
where

Dm,M−,N =
∏

i∈[1..m]\(supp(M−)∪N)

di,

D′
m,M−

=
∏

i∈[1..m]\{r,c(r)|r∈M−}

di,

EM−
=

∏

r∈M−

er, and

OM+
=

∏

r∈M+

or.

The construction given in Table 2 was used for the proof, simu-
lating GCA 6 (for conciseness, the multiset of objects dr, 0 ≤ r ≤ 7,
r 6∈ M , is denoted by d(M), and we omit the braces denoting M).

In addition to w1, to the initial configuration we add the number of
symbols o1 corresponding with the code of the machine to be simulated
and the number of symbols o0 corresponding with the input number to
this machine; the result of the simulation is represented by the number
of symbols o8 in the final configuration.

Going to the extreme with the number of catalysts, we can even
obtain a real-time simulation of register machines, see [4], and obtain
a universal P system with even less rules.

30

Small P Systems with Catalysts or Anti-Matter

Π = (O,C, {o1, o2}, {o8}, w,R) where

O = C ∪ {or | 0 ≤ r ≤ 8} ∪Q ∪ {dr,− , dr,0 | 0 ≤ i ≤ 7} ∪ {d, d′,#},

C = {cr,− , cr,0 | 0 ≤ r ≤ 7} ∪ {cd, cp, c#},

w = c0,− · · · c4,− c5,− c5,− c5,− c6,− c7,− c0,0 · · · c7,0 cdcpc#

dd′p1eS(d1,−), and the set R consists of the following rules:

R = {cr,−or → cr,−, cr,−d → cr,−# | r ∈ {0, · · · , 7}}

∪ {cr,0or → cr,0#, cr,0dr,0 → cr,0, cr,−dr,− → cr,−,

c#dr,− → c## | r ∈ {0, · · · , 7}}

∪ {cdd
′ → cd, cdd → cd, c#d

′ → c##, c## → c##}

∪ {cpq1 → cpq1d
′eS(d1,−)o7, cpq1 → cpq4d

′eS(d1,0)o6,

cpq4 → cpq4d
′eS(d5,−)o6, cpq4 → cpq4′d

′eS(d6,− d5,0),

cpq4′ → cpq10d
′eS(λ)o5,

cpq10 → cpq10d
′eS(d6,− d7,−)o1o5,

cpq10 → cpq4d
′eS(d7,− d6,0)o1,

cpq10 → cpq1d
′eS(d6,0 d7,0), cpq10 → cpq1d

′eS(d4,− d6,− d7,0),

cpq10 → cpq18d
′eS(d5,− d6,− d4,0 d7,0),

cpq18 → cpq18d
′eS(d5,− d5,− d5,−)o4,

cpq18 → cpq1d
′eS(d3,0 d5,0)o0,

cpq18 → cpq1d
′eS(d0,− d5,− d5,− d2,0 d5,0)o4,

cpq18 → cpq32d
′eS(d2,− d5,− d5,− d5,0)o4,

cpq18 → cpq32d
′eS(d5,− d5,− d0,0 d2,0 d5,0)o4,

cpq18 → cpq32d
′eS(d3,− d5,0),

cpq18 → cpq32d
′eS(d5,− d5,0)o2o3, cpq32 → cpq1d

′eS(d4,−),

cpq32 → cpq32d
′eS(d0,− d4,0)o8,

cpq32 → cpq32d
′eS(d1,− d4,0), cpq32 → cpq32d

′eS(d6,− d4,0),

cpq32 → cpeS(d0,0 d1,0 d4,0 d6,0)}.

Table 3. A universal purely catalytic P system with 21 catalysts.

31

A. Alhazov, R. Freund, P. Sośık

Theorem 3 (see [4]) There exists a small universal purely catalytic P

system with 21 catalysts and 74 rules. Using toxic objects, the number

of rules can be reduced to 64.

Let S be a finite multiset and S′ ⊆ S, and let eS(S
′) be a string

representing the multiset S \ S′. We note that we will use eS(λ) (as λ
denotes the empty multiset) for representing the multiset S itself. We
define the multiset S and the corresponding mapping eS by

eS(λ) = d0,− · · · d4,− d5,− d5,− d5,− d6,− d7,− d0,0 · · · d7,0,

and for a finite multiset L, by g(L) we denote a string representing a
multiset consisting of objects or for each occurrence of r in L. Besides
the rules associated to instructions, the following rules are used:

R = {cr,−or → cr,−, cr,−d → cr,−# | r ∈ {0, · · · , 7}}

∪ {cr,0or → cr,0#, cr,0dr,0 → cr,0, cr,−dr,− → cr,−,

c#dr,− → c## | r ∈ {0, · · · , 7}}

∪ {cdd
′ → cd, cdd → cd, c#d

′ → c##, c## → c##}.

If we take S to be the finite multiset over {dr,− , dr,0 | 1 ≤ r ≤ m}

such that, for 1 ≤ r ≤ m, S(dr,0) = 1 if r ∈
⋃

j:(q,M−,N,M+,q′)∈P N

and S(dr,0) = 0 otherwise, as well as S(dr,−) = max{M−(r) |

j : (q,M−, N,M+, q
′) ∈ P}, then the simulation of an instruction

j : (q,M−, N,M+, q
′) is initiated by the catalytic rule

cpq → cpq
′d′eS(〈dr,−

M−(r) | r ∈ supp(M−)〉 ∪ 〈dr,0 | r ∈ N〉)g(M+).

The construction for the proof simulating GCA 4 is given in Table 3.

7 Universal P Systems with Two Catalysts

We now take the new simulation from [3]. For a register machine with
only two working registers, we need 5 rules per instruction plus 11
rules; cleaning happens by the P system itself at the end of a successful

32

Small P Systems with Catalysts or Anti-Matter

simulation (for example, see [16], for detailed arguments), but recopy-
ing of the result to an extra non-decrementable register at the end of
the simulation is needed for the case of weak universality. Hence, we
obtain a weakly-strongly / weakly universal catalytic P system with
two catalysts, having 611/476 rules (improving the result of 1091/848
rules from [4]). Using the feature of toxic objects, the simulation costs
are reduced to 5 rules per instruction plus 8, yielding 608/473 rules
(improving the result of 726/564 rules from [4]).

8 Universal Purely Catalytic P Systems

It was stated in [3] that the constructions obtained there for catm also
hold for pcatm+2: one catalyst can take care of the states and pro-
gram symbols, while one more catalyst can perform the trapping rules.
Hence, any generalized register machine with m decrementable regis-
ters and s generalized SUB-instructions can be simulated by a purely

catalytic P system with m+2 catalysts and 5s+5m+1 rules. There-
fore, the results with 611, 476, 608 and 473 rules for universal catalytic
P systems with 2 catalysts also hold for universal purely catalytic P
systems with 4 catalysts.

It was shown in [3] that purely catalytic P systems with 9 catalysts
are strongly universal with 6 × 16 + 6 × 8 + 1 = 145 rules. Using the
formula 6s + 6m+ 1 from [17], simulating the weakly universal gener-
alized register machine we obtain a weakly universal purely catalytic
P system with 8 catalysts and 6× 15 + 6× 7 + 1 = 133 rules (improv-
ing the result of 171 rules from [4]). In a similar approach, consider
the weakly-strongly/weakly universal generalized register machine with
m = 2 decrementable registers and s = 93/s = 120 generalized regis-
ter machine instructions. Again using the formula 6s + 6m + 1 from
the recent paper [17], we obtain a weakly-strongly/weakly universal
purely catalytic P system with 3 catalysts and 6 × 120 + 6 × 2 + 1 =
733/6× 93+6× 2+1 = 571 rules, thus improving the previously best
known results of 1091/848 rules, respectively.

33

A. Alhazov, R. Freund, P. Sośık

9 Conclusions

It has been known that only one bi-stable catalyst suffices for computa-
tional completeness of P systems (having non-cooperative rules besides
the bi-catalytic ones) and that purely catalytic P systems with three
catalysts are computationally complete. With two catalysts computa-
tional completeness can be obtained if one of them is bi-stable, see [4].

Feature s ws w s,tox ws,tox w,tox

p8cat,
pcat 61[4] 47[4]
p7cat,
pcat 56[4] 43[4]
p2cat,
pcat 483[4] 371[4] 362[4] 278[4]

pcat21 74[4]
pcat20 64[4]
pcat10 98[3] 89[3]
cat8 98[3] 89[3]
pcat9 145[3]
pcat8 133[17]+[4] 120[4]
pcat7 111[4]
pcat4 611+[4] 476+[4] 608+[4] 473+[4]

cat2 611+[4] 476+[4] 608+[4] 473+[4]

pcat3 733[17]+[4] 571[17]+[4]

pcat2 726[4] 564[4]

Table 4. Number of rules in universal catalytic P systems. We write
“s” for strongly universal P systems, “ws” for weakly-strongly universal
P systems and “w” for weakly universal P systems, “tox” for P systems
with toxic objects, “catk” for k catalysts, mcat for anm-stable catalyst,
and “p” indicates P systems without non-cooperative rules.

Generalizing counter automata by allowing them to perform mul-
tiple operations on multiple registers, a few small generalized counter

34

Small P Systems with Catalysts or Anti-Matter

automata are obtained (from 16 rules to 22 rules), depending on the
specific requirements of P systems that would simulate them. General-
ized counter automata are a very convenient tool for constructing small
universal P systems. For instance, small strongly universal P systems
with anti-matter with 9 annihilation rules and, in total, 53 rules in
the accepting case, 59 rules in the generating case, and 57 rules in the
computing case can be constructed.

By optimizing the reduction of the universal register machines
U22 and U20 to register machines with two working registers, in [4]
a strongly universal register machine with 120 instructions and two
decrementable registers and a weakly universal register machine with
92 instructions and two registers have been obtained.

The now best known results for catalytic systems are summarized
in Table 4. It describes universal (purely or not) catalytic P systems
with and without toxic objects where the type of universality ranges
from strong over weak-strong to weak. The results in the upper part of
the table correspond to one normal catalyst and one m-stable catalyst,
2 ≤ m ≤ 8, while the results in the lower part of the table correspond
to k catalysts, 2 ≤ k ≤ 21. Depending on all these features, the overall
number of rules varies from 43, top right, to 733, bottom left.

The new results elaborated in this paper are indicated in boldface.
If some entry of a table contains “+”, then the reference following it in-
dicates where the underlying simulating model has been studied, while
the reference preceding “+” (if indicated, otherwise we imply the cur-
rent paper) indicates where the currently best known simulated com-
plexity has been obtained. Three small universal P systems, namely,
the one with anti-matter and 53 rules, the catalytic one with 8 cata-
lysts and 98 rules, and the purely catalytic one with 21 catalysts and
74 rules, were chosen to be presented explicitly in Tables 1, 2, and 3.

References

[1] A. Alhazov, B. Aman, R. Freund, Gh. Păun: Matter and Anti-Matter in
Membrane Systems. In: H. Jürgensen, J. Karhumäki, A. Okhotin (Eds.):
16th International Workshop on Descriptional Complexity of Formal Sys-

35

A. Alhazov, R. Freund, P. Sośık

tems, DCFS 2014, Lecture Notes in Computer Science 8614, 2014, 65–
76.

[2] A. Alhazov, R. Freund: P Systems with Toxic Objects. In: M. Gheorghe,
G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron: Membrane Computing

- 15th International Conference, CMC 2014, Prague, Lecture Notes in
Computer Science 8961, 2014, 99–125.

[3] A. Alhazov, R. Freund: Small Catalytic P Systems. Workshop on Mem-
brane Computing, Auckland, accepted, 2015.

[4] A. Alhazov, R. Freund: Variants of Small Universal P Systems with
Catalysts. Fundamenta Informaticae 138(1-2), 227–250, 2015.

[5] A. Alhazov, Yu. Rogozhin, S. Verlan: On Small Universal Splicing Sys-
tems. International Journal of Foundations of Computer Science 23 (7),
2012, 1423–1438.

[6] A. Alhazov, S. Verlan: Minimization Strategies for Maximally Paral-
lel Multiset Rewriting Systems. Theoretical Computer Science 412 (17),
2011, 1581–1591.

[7] R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal
P Systems without Priorities: Two Catalysts Are Sufficient. Theoretical
Computer Science 330 (2), 2005, 251–266.

[8] R. Freund, M. Oswald: A Small Universal Antiport P System with For-
bidden Context. In: H. Leung, G. Pighizzini (Eds.): Proceedings of the

8th International Workshop on Descriptional Complexity of Formal Sys-

tems, DCFS 2006, Las Cruces, New Mexico, USA, 2006, New Mexico
State University, 2006, 259–266.

[9] S. Ivanov, E. Pelz, S. Verlan: Small Universal Non-deterministic Petri
Nets with Inhibitor Arcs. In: H. Jürgensen, J. Karhumäki, A. Okhotin
(Eds.): 16th International Workshop on Descriptional Complexity of

Formal Systems, DCFS 2014, Lecture Notes in Computer Science 8614,
2014, 186–197.

[10] I. Korec: Small Universal Register Machines. Theoretical Computer Sci-

ence 168, 1996, 267–301.

[11] M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1967.

36

Small P Systems with Catalysts or Anti-Matter

[12] Gh. Păun: Computing with Membranes. Journal of Computer and Sys-

tem Sciences 61 (1), 108–143 (2000) (and Turku Center for Computer
Science – TUCS Report 208, November 1998, www.tucs.fi).

[13] Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.

[14] Gh. Păun, G. Rozenberg, A. Salomaa: The Oxford Handbook of Mem-

brane Computing. Oxford University Press, 2010.

[15] G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3
volumes. Springer, 1997.

[16] P. Sośık, M. Langer: Improved Universality Proof for Catalytic P Sys-
tems and a Relation to Non-Semilinear Sets. In: S. Bensch, R. Freund, F.
Otto (Eds.): Sixth Workshop on Non-Classical Models of Automata and

Applications (NCMA 2014), books@ocg.at, BAND 304, 2014, 223–233.

[17] P. Sośık, M. Langer: Small Catalytic P Systems Simulating Register
Machines. Theoretical Computer Science, accepted, 2015.

[18] P systems webpage. http://ppage.psystems.eu.

Artiom Alhazov, Rudolf Freund, Petr Sośık Received July 13, 2015

Artiom Alhazov
Institute of Mathematics and Computer Science
Str. Academiei 5,
Chişinău, MD-2028, Moldova
E–mail: artiom.alhazov@math.md

Rudolf Freund
Faculty of Informatics, TU Wien
Favoritenstraße 9-11, 1040 Wien, Austria
E–mail: rudi@emcc.at

Petr Sośık
Research Institute of the IT4Innovations Centre of Excellence
Faculty of Philosophy and Science, Silesian University in Opava
74601 Opava, Czech Republic
E–mail: petr.sosik@fpf.slu.cz

37

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

BioMaxP : A Formal Approach for

Cellular Ion Pumps

Bogdan Aman Gabriel Ciobanu

Abstract

We look at the living cells as complex systems of ion pumps
working in parallel to ensure proper physiologic functionalities.
To model such a system of pumps, we define a formalism called
BioMaxP that allows working with multisets of ions, explicit in-
terpretation of the transportation (from inside to outside, and
from outside to inside) based on the number of existing ions, and
a maximal parallel execution of the involved pumps.

1 Introduction

All living cells can be seen as complex systems of interacting com-
ponents, having different concentrations of ions (e.g., Na+, K+ and
Ca++) across the cell membrane. Under resting conditions, Na+ and
Ca++ ions enter the cells and K+ ions exit the cell because the concen-
tration of K+ is high inside the cell and low outside, while the opposite
situation is found for Na+ and Ca++. A fundamental mechanism in
most of the living cells is the Na+/K+-ATPase that is essential for
the maintenance of Na+ and K+ concentrations across the membrane
by transporting Na+ out of the cell and K+ back into the cell. This
pump is the first discovered ion transporter; for this discovery, the
Danish chemist Jens Skou received the Nobel Prize in 1997.

In this paper we model the movement of ions and the conforma-
tional transformations of ion transporters (NaK ion pumps, Na and
K ion channels) using a very simple but powerful new formalism called

c©2015 by B. Aman, G. Ciobanu

38

BioMaxP : A Formal Approach for Cellular Ion Pumps

BioMaxP . We use an operational semantics able to capture quantita-
tive aspects (e.g., number of ions) and abstract conditions associated
with evolution (e.g., the number of ions is between certain thresholds).
The modelling aims to facilitate a better understanding of the living
cell viewed as a complex system of parallel ion transporters.

The novelty of our approach is that we model systems composed of
more than one pump as usually done (e.g., see [5]). Since the pumps
non-deterministically choose which ions to transport, the complexity of
such systems increases with the number of pumps. For further notions
about NaK pump, the interested reader can consult [1].

2 Syntax and Semantics of BioMaxP

The prototyping language BioMaxPprovides sufficient expressiveness to
model in an elegant way the interaction in complex systems of parallel
ion pumps. The cell is a complex system of parallel pumps trying to
keep the equilibrium of ions inside the cell. In order to model these
pumps, we enforce that their functioning takes place only if the number
of various types of ions is between some accepted limits given by min

and max values. Therefore the syntax and semantics emphasize the
process of counting them, and the way the quantities of ions vary during
evolution. The semantics of BioMaxP is provided by multiset labelled
transitions in which multisets of actions are executed in parallel.

Syntax of BioMaxP The syntax of BioMaxP is given in Table 1,
where the following are assumed:

• a set Chan of ion transportation channels a, and a set Id of process
identifiers (each id ∈ Id has its arity mid);

• for each id ∈ Id there is a unique process id(u1, . . . , um
id

:

T1, . . . , Tm
id
)
def
= Pid, where the distinct variables ui are parame-

ters, and the Ti are ions types;

• v is a tuple of expressions built from values, variables and allowed
operations;

• T represent ions types.

39

B. Aman, G. Ciobanu

Table 1. BioMaxP Syntax

Processes

P,Q ::= amin!(v : T) then P p (sending)
amax?(f(u : T)) then P p (receiving)
id(v) p (recursion)
P | Q (parallel)

A constraint min associated with a sending action amin!(z : T) then

P makes the channel a available for sending z units/ions of type T

only if the total available quantity of ions of type t is greater than
min. A constraint max associated to a receiving action amax?(x : T)
then P along a channel a is activated only if the number of ions of
the type T available is less than max. The function f of the receiving
action can be either id (we often omit it), meaning that the received
ions are to be transported, or add, meaning that the ions are received
from some other process. The only variable binding constructor is
amax?(u : T) then P ; it binds the variable u within P . The free variables
of a process P are denoted by fv(P); for a process definition, is assumed
that fv(Pid) ⊆ {u1, . . . , um

id
}, where ui are the process parameters.

Processes are defined up-to an alpha-conversion, and {v/u}P denotes
P in which all free occurrences of the variable u are replaced by v,
eventually after alpha-converting P in order to avoid clashes. Processes
are further constructed from the parallel composition P | Q. A system
of parallel pumps is represented as a process with some initial values
for the numbers of ions.

Remark 1 In order to focus on the local interaction aspects of

BioMaxP , we abstract from arithmetical operations, considering by de-

fault that the simple ones (comparing, addition, subtraction) are in-

cluded in the language.

Operational Semantics of BioMaxP The operational semantics
rules of BioMaxP is presented in Table 2. The multiset labelled transi-

40

BioMaxP : A Formal Approach for Cellular Ion Pumps

tions of form P
Λ
−→ P ′ use a multiset Λ to indicate the actions executed

in parallel in one step. When the multiset Λ contains only one ac-

tion λ, in order to simplify the notation, P
{λ}
−−→ P ′ is simply written

as P
λ
−→ P ′. We assume that in order to interact the processes can

commute, namely P | Q is the same process as Q | P .

Table 2. BioMaxP Operational Semantics

(Com)
v : T and min ≤ |T | ≤ max

amin!〈v〉 then P | amax?(f(u : T)) then P ′ {v/u}
−−−→ P | {v/u}P ′

and |T | = |T | − v if f = id or |T | = |T |+ v if f = add

(Call)
{v/u}Pid

id
−→ P ′

id

id(v)
id
−→ P ′

id

where id(v : T)
def
= Pid

(Par1)
P1

Λ1
−→ P ′

1 P 6→

P1 | P
Λ1
−→ P ′

1 | P
(Par2)

P1

Λ1
−→ P ′

1 P2

Λ2
−→ P ′

2

P1 | P2

Λ1∪Λ2
−−−−→ P ′

1 | P
′
2

In rule (Com), an output process amin!〈v〉 then P succeeds in send-
ing a tuple of values v over channel a to process amax?(u : T) then P

if v has the same type T as u and if the number of ions of type T is
between min and max, namely v : T and min ≤ |T | ≤ max. Both
processes continue to execute, the first one as P and the second one
as {v/u}P ′. Once the ions are send away, f = id, the number of ions
of type T becomes T − |v|, while if they are received, f = add, then
the number of ions of type T becomes T + |v|. Rule (Call) describes
the evolution of a recursion process. Rules (Par1) and (Par2) are
used to compose larger processes from smaller ones by putting them
in parallel, and considering the union of multisets of actions. In rule
(Par2), P 6→ denotes a process P that cannot evolve. It can be noticed
that in rule (Par2) we use negative premises: an activity is performed
based on the absence of actions. This is due to the fact that sequencing

41

B. Aman, G. Ciobanu

the evolution can only be defined using negative premises, as done for
sequencing processes [6, 10].

Example 1 The use of BioMaxP for specifying complex systems of

pumps is illustrated by describing in an explicit way the molecular in-

teractions and conformational transformations of a large system of ion

transporters, namely Na+K+ ATPases and Na and K ion channels,

that are concerned with the movement of sodium-potassium ions in and

out of a cell whenever certain thresholds are verified. The system we

consider is formed from n1 NaK pumps, n2 Na channels and n3 K

channels. Each pump i is modelled by three processes: one that models

the interaction of the pump with the environment, one modelling the

interaction with the cell and another one that models the transport of

ions through the membrane. The molecular components are processes

modelled as the ends of a channel (one end for input, and another for

output), while the molecular interaction coincides with communication

on channels.

The initial system of pumps is described in BioMaxP by:
Cell(NaEnv,KEnv,NaCell,KCell, AtP,ADP, P) =

| NaKPumpEnv(0) | NaKPumpCell(0) | NaKPump(0)
· · · | NaKPumpEnv(n1-1) | NaKPumpCell(n1-1) | NaKPump(n1-1)

| NaPumpEnv(n1) | NaPumpCell(n1) | NaPump(n1)
· · ·|NaPumpEnv(n1+n2−1) |NaPumpCell(n1+n2−1) |NaPump(n1+n2−1)

| KPumpEnv(n1 + n2) | KPumpCell(n1 + n2) | KPump(n1 + n2)
· · · | KPumpEnv(n1 + n2 + n3-1) | KPumpCell(n1 + n2 + n3-1) |

KPump(n1 + n2 + n3-1)
CreateATP | ConsumeADP

We present in detail some of the above processes. The others are writ-

ten in a similar manner.

• Cell(NaCell,KCell, AtP,ADP,NaEnv,KEnv, P) is the sys-

tem in which several quantities of ions are initialized.

• Each NaK-ATPase is described by three processes:

∗ NaKPumpEnv(id) = site2[id]160?(add(yna : NaEnv))
then site2[id]2!〈2K〉
then p[id]6?(add(yp : P))

then NaKPumpEnv(id)

42

BioMaxP : A Formal Approach for Cellular Ion Pumps

The environment site of the pump contains the channel

site2[id] used for receiving three ions of Na+ and also for

sending two ions of K+, and also the channel p[id] for re-

ceiving the produced P molecules. The sending and receiv-

ing operations modify also the number of ions present in the

system of pumps: e.g., when sending two K+ ions, an op-

eration of the form KEnv = Kenv − 2 is performed, while

receiving the yna : NaEnv ions an operation of the form

NaEnv = NaEnv + 3 is performed due to the add func-

tion that is used to add the amount of received ions to the

corresponding multiset.

∗ NaKPumpCell(id) = site1[id](12,1)!〈(3Na,ATP)〉
then adp[id]6?(add(xadp : ADP))
then site1[id]150?(add(xk : KCell))

then NaKPumpCell(id)

The cell site of the pump contains the channel site1[id] used
for sending three ions of Na+ and one ATP and also for

receiving two ions of K+, and also the channel adp[id] for
receiving the produced ADP molecules.

∗ NaKPump(id) = site1[id](28,9)?((xna : NaCell, xatp : ATP))
then adp[id]0!〈ADP 〉
then site2[id]100!〈2Na〉
then site2[id]6?(yk : KEnv)
then p[id]0!〈P 〉 then site1[id]110!〈2K〉

then NaKPump(id)

This process describes the evolution of the pump, namely the

transport of Na and K ions between the environment and

the cell.

3 Timed Automata

Due to their simplicity, timed automata, extended with integer vari-
ables, structured data types, user defined functions, and channel syn-
chronization, have been used by several tools (e.g., Uppaal) for the
simulation and verification of timed automata [2]. In what follows we
consider a particular case of timed automata, namely we ignore the

43

B. Aman, G. Ciobanu

time aspects as they are not relevant to our approach and will refer to
timed automata as automata.

Syntax Assume a finite set of integer variables C ranged over by x,
y, . . . standing for data, and a finite alphabet Σ ranged over by a,
b, . . . standing for actions. A constraint is a conjunctive formula of
constraints of the form x ∼ m for x ∈ C, ∼∈ {≤, <,==, >,≥}, and
m ∈ N. The set of constraints, ranged over by g, is denoted by B(C).

Definition 1 An automaton A is a tuple 〈N,n0, E〉, where

• N is a finite set of nodes;

• n0 is the initial node;

• E ⊆ N × B(C)× Σ× N
C ×N is the set of edges.

n
g,a,r
−−−→ n′ is a shorthand notation for 〈n, g, a, r, n′〉 ∈ E. r denotes

fresh assignments to variables after the transition is performed.

Networks of Automata A network of automata is the parallel com-
position A1 | . . . | An of a set of automata A1, . . . ,An combined into
a single system. Synchronous communication inside the network is by
handshake synchronization of input and output actions. In this case,
the action alphabet Σ consists of a? symbols (for input actions), a!
symbols (for output actions), and τ symbols (for internal actions). A
detailed example is found in [9]. A network can perform action tran-
sitions (following an enabled edge). An action transition is enabled if
all guards on the corresponding edges are satisfied.

Let u, v, . . . denote assignments mapping C to naturals N. g |= u

means that the values u satisfy the guard g. Let ni stand for the ith
element of a node vector n, and n[n′

i/ni] for the vector n with ni being
substituted with n′

i. A network state is a pair 〈n, u〉, where n denotes
a vector of current nodes of the network (one for each automaton),
and u is an assignment storing the current values of all network integer
variables.

44

BioMaxP : A Formal Approach for Cellular Ion Pumps

Definition 2 The operational semantics of an automaton is a transi-

tion system where states are pairs 〈n, u〉 and transitions are defined by

the rules:

• 〈n, u〉
τ
−→ 〈n[n′

i/ni], u
′〉 if ni

g,τ,r
−−−→ n′

i, g |=u and u′=r[u];

• 〈n, u〉
τ
−→ 〈n[n′

i/ni][n
′
j/nj], u

′〉 if there exist i 6= j such that

1. ni
gi,a?,ri
−−−−→ n′

i, nj

gj ,a!,rj
−−−−→ n′

j, gi ∧ gj |= u,

2. u′ = ri[rj [u]].

4 Relating BioMaxP to Automata

In order to use existing tools such as Uppaal for the verification of
complex systems of parallel pumps, we establish a relationship between
BioMaxP and automata.

Building an automaton for each process: Given a process P

without the parallel operator at the top level, we associate to it an
automaton A = 〈N,n0, E〉, where n0 = l0, N = {l0}, E = ∅. The
initial values of the BioMaxP system composed of P are set as the initial
values of the automaton A. The nodes of the associated automata are
labelled using a fresh label l, and an index such that the nodes are
uniquely labelled in this automaton (we start with the index 0, and
increment it when necessary). The components N and E are updated
depending on the structure of process P :

• for P = amin!〈v〉 then P1 we have

– N = N ∪ {li+1} where i = max{j | lj ∈ N};
∗ The added node li+1 indicates the execution of the pro-

cess P , leading to P1.

– E = E ∪ {n,min ≤ |T |, a!, , li+1};

∗ If i > 0 it means that the automaton already contains
some edges, and the process P was launched from the
then branch of a process P ′. Since the translation is
made depending on the structure of the processes, it
means that the action leading to P is already modelled

45

B. Aman, G. Ciobanu

in the automaton. If P ′ = bmin′

!〈w〉 then P or P ′ =
bmax′

?(u : T ′) then P , then the action of P ′ is modelled
by an edge with the last component lk, and thus n = lk.

∗ Otherwise, n = l0.

The edge encodes the then branch leading to process P1.
Channel a is an urgent channel (communication takes place
as soon as possible).

• for P = amax?(f(u : T)) then P1 we have
– N = N ∪ {li+1} where i = max{j | lj ∈ N};

– E =

{

E ∪ {li, |T | ≤ max, a!, |T | = |T | − |u|, li+1}, if f = id;

E ∪ {li, |T | ≤ max, a!, |T | = |T |+ |u|, li+1}, if f=add.
A similar reasoning as for the previous case. Depending
on function f , ions are removed or added from the number
representing the existing ions of type T .

• for P =P1 | . . . |Pk, k > 1, and Pj does not contain operator | at
top level, then

– N = N ∪ {li+1} where i = max{j | lj ∈ N};
∗ If P contains some indexed nodes l (namely l0, . . . , li),

then add li+1 to N .
– E = E ∪ {n, , a!, {x = 0}, li+1};

∗ If i > 0, using a similar argument as for the commu-
nication actions, it holds that n = lk. We use a new
channel labelled a as a broadcast channel, in order to
start at the same time all the parallel processes from P .

∗ Otherwise, n = l0.
The new edge leads to process P1. For each of the other
processes Pj , j > 1, a new automaton Aj = 〈Nj , nj0, Ej , Ij〉

is build, where:
∗ nj0 = l0; Nj = {l0, l1}; Ej = {l0, , a?, {x = 0}, l1};

Ij(l0) = ∅.
The automaton is constructed recursively using the defini-
tion of Pj .

Building an automaton for each process leads to the next result about
the equivalence between a BioMaxPprocess P and its corresponding
automaton AP in state 〈nP , uP 〉 (i.e., (AP , 〈nP , uP 〉). Their transition

46

BioMaxP : A Formal Approach for Cellular Ion Pumps

systems differ not only in transitions, but also in states; thus, we adapt
the notion of bisimilarity:

Definition 3 A symmetric relation ∼ between BioMaxP processes and

their corresponding automata is a bisimulation if whenever (N, (AN ,

〈nN , uN 〉)) ∈∼ if P
λ
−→ P ′, then 〈nP , uP 〉

τ
−→ 〈nP ′ , uP ′〉 and (P ′, (AP ′ ,

〈nP ′ , uP ′〉)) ∈∼ for some P ′.

After defining bisimulation, we can state the following result.

Theorem 1 Given a BioMaxP process P , there exists an automata AP

with a bisimilar behaviour. Formally, P ∼ AP .

Proof. [Sketch] The construction of the automaton simulating a given
BioMaxPprocess is presented above. A bisimilar behaviour is given by
the fact that a communication rule is matched by a synchronization
between the edges obtained by translations. ✷

Thus, the size of an automata AP is polynomial with respect to the size
of a BioMaxPprocess P , and the state spaces have the same number of
states.

Reachability Analysis. Qualitative properties abstract away from
any quantitative information like time aspects or energy costs of tar-
geted biological systems. One of the most useful question to ask about
an automaton is the reachability of a given set of final states. Such
final states may be used to characterize safety properties of a system.

Definition 4 For an automata with initial state 〈n0, u0〉, 〈n, u〉 is

reachable if and only if 〈n0, u0〉
τ

→∗ 〈n, u〉. More generally, given a

constraint φ ∈ B(C) if 〈n, u〉 is reachable for some u satisfying φ, then

a state 〈n, φ〉 is reachable.

The reachability problem is decidable [4]. The reachability problem
can be also defined for BioMaxPnetworks.

47

B. Aman, G. Ciobanu

Definition 5 Starting from a BioMaxP process P0, a process P1 is

reachable if and only if P0

λ

→∗ P1.

The following result is a consequence of Theorem 1.

Corollary 1 For a BioMaxP process, the reachability problem is decid-

able.

5 Conclusion

Previously, we provided a formal description of the sodium-potassium
ion transport across cell membranes in terms of the π-calculus [8]. In
[7], the transfer mechanisms were described step by step, and a software
tool called Mobility Workbench [11] was used to verify some properties
of the described system formed of only one pump. Inspired by the
functioning of this pump, we introduced and studied a ratio-based type
system using thresholds in a bio-inspired formalism [3]. The aim was
to avoid errors in the definition of the formal models used to mimic the
evolution of some biologic processes.

In this paper we try to unify and extend our previous attempts
to model the movement of ions using the sodium-potassium-pump by
introducing a very simple, elegant but powerful new formalism called
BioMaxP able to capture the quantitative aspects (e.g., number of ions)
and abstract conditions associated with evolution (e.g., the number of
ions is between certain thresholds). This approach facilitates a better
understanding of the processes happening in a cell viewed as a complex
system of ion pumps working in parallel. The novelty is that we are
able to model systems consisting of more than just a NaK pump by
adding different amounts of other types of ion pumps.

Acknowledgements. The work was supported by a grant of the
Romanian National Authority for Scientific Research, project number
PN-II-ID-PCE-2011-3-0919.

48

BioMaxP : A Formal Approach for Cellular Ion Pumps

References

[1] B. Alberts, A. Johnson, J. Lewis, D. Morgan, M. Raff, K. Roberts,
P. Walter. Molecular Biology of the Cell, 6th edition, Garland
Science, New York (2014).

[2] R. Alur, D.L. Dill. A Theory of Timed Automata. Theoretical

Computer Science 126, 183–235 (1994).
[3] B. Aman, G. Ciobanu. Behavioural Types Inspired by Cellu-

lar Thresholds. Lecture Notes in Computer Science 8368, 1–15
(2014).

[4] J. Bengtsson, W. Yi. Timed Automata: Semantics, Algorithms
and Tools. Lecture Notes in Computer Science 3098, 87–124
(2004).

[5] D. Besozzi, G. Ciobanu. A P System Description of the Sodium-
Potassium Pump. Lecture Notes in Computer Science 3365, 210–
223 (2005).

[6] B. Bloom, S. Istrail, A.R. Meyer. Bisimulation Can’t Be Traced:
Preliminary Report. In 15th ACM Symposium on Principles of

Programming Languages, 229–239, 1988.
[7] G. Ciobanu. Software Verification of the Biomolecular Systems.

in Modelling in Molecular Biology, Natural Computing Series,
Springer, 40–59 (2004).

[8] G. Ciobanu, V. Ciubotariu, B. Tanasă. A π-calculus Model of the
Na Pump, Genome Informatics 13, 469–472 (2002).

[9] T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model
Checking for Real-time Systems. Information and Computation

111, 192–224 (1994).
[10] F. Moller. Axioms for Concurrency. PhD Thesis, Department of

Computer Science, University of Edinburgh, 1989.
[11] B. Victor, F. Moller. The Mobility Workbench - A Tool for the π-

Calculus. Lecture Notes in Computer Science 818, 428–440 (1994).

Bogdan Aman, Gabriel Ciobanu Received July 21, 2015

Romanian Academy, Institute of Computer Science

Blvd. Carol I no.11, 700506 Iaşi, Romania

E–mail: baman@iit.tuiasi.ro, gabriel@info.uaic.ro

49

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Institution for Pure First-Order

Composition-Nominative Logic

Alexey Chentsov, Mykola Nikitchenko

Abstract

This paper aims to present composition-nominative logics as
institutions. To be informative, pure first-order composition-
nominative logic is chosen. Signature category and sentence
functor are provided. Several ways to introduce homomorphisms
between models of pure first-order composition-nominative logic
are proposed. Restrictions on signature morphisms necessary to
construct model functor are proposed. Satisfaction condition for
obtained constructions is shown to hold.

Keywords: Institutions, composition-nominative logics, mo-
del, irrefutability.

1 Introduction

Composition-nominative logics are program-oriented logics constructed
according to principles of development from abstract to concrete, in-
tegrity of intensions and extensions, compositionality, and nominativity
[1, 2, 3]. Distinctive feature of composition-nominative logics is high
level of abstraction for data, which are not just elements of some set
but rather carry additional structure of values assigned to names, i.e.
they specify a correspondence between names and elements. This cor-
respondence is called nominative set and can be partial. Depending
on the entities studied the composition-nominative logics vary from
propositional to program logics and form a hierarchy of such logics.
Another dimension to differentiate one composition-nominative logic
from another is whether its entities are interpreted as total or partial

c©2015 by A. Chentsov, M. Nikitchenko

50

Institution for Pure First-Order CNL

functions. Properties of composition-nominative logics are quite well-
studied [1, 3, 4]. Still there is a need to relate the results obtained for
these logics to other logics. This can be achieved using such theoretical
tools as institutions [5, 6].

Institutions are a unified framework that allows studying properties
of logical systems in abstract manner independently of notation. Insti-
tutions capture a lot of common features of different logics. Institution-
theoretic results are applicable to the wide range of logical systems. So
considering the logical system one is interested in presenting it as in-
stitution and finding out what specificity the obtained institution has.

This paper initiates considerations on turning composition-nomi-
native logics (CNLs) into institutions. To be informative pure first-
order composition-nominative logic is selected. This logic is also known
as pure quasiary predicate logics based on algebras with one sort. It is
quite expressive and it is not too overloaded with details.

2 Pure first-order composition-nominative logic

2.1 Syntax

We start with the definition of syntax of the pure first-order CNL. Let
Ps and V be the sets of predicate symbols and names respectively.
The class of well-formed formulas is defined inductively (here we use
notation similar to [7]):

Φ ::= π

¬Ψ
Ψ ∨Ψ′

∃xΨ
Rv1...vn

x1...xn

Ψ,

(1)

where π ∈ Ps, x, xi, vi ∈ V ; Ψ and Ψ′ are formulas. Symbols ¬, ∨,
∃x, Rv1...vn

x1...xn

are called composition symbols. Composition Rv1...vn
x1...xn

is
called renomination and usually abbreviated as Rv̄

x̄. It has uniqueness
constraint on upper names vi, i.e. vi = vj only if i = j. Implica-
tion, conjunction and universal quantifier are defined conventionally as

51

A. Chentsov, M. Nikitchenko

follows

Φ ∧Ψ = ¬(¬Φ ∨ ¬Ψ)

Φ → Ψ = ¬Φ ∨Ψ

∀xΦ = ¬∃x¬Φ

2.2 Nominative data

The basis for semantics of various composition-nominative logics is
formed by nominative sets and quasiary predicates. Let A 6= ∅ be
some set. A (partial) nominative set is a partial mapping from V to
A, the class of all such mappings is denoted by VA. In this context set
A is called set of values, VA is called set of nominative sets or set of
states. Nominative sets can be also called nominative data.

We use the following notation in regard to partiality. Let f : A
p

−→

B, a ∈ A, b ∈ B. We write f(a)↑ if a /∈ δf , otherwise if a ∈ δf we write
f(a)↓. In the latter case f(a)↓ can be used as well as the value of f on
a, e.g. f(a)↓ = b.

The elements of nominative data are pairs of the form v 7→ a.
Expression v 7→ a ∈n d denotes d(v)↓ = a. Nominative sets are con-
structed using set-builder notation with square brackets.

Let us introduce the unary operation rv1...vnx1...xn

of finite renomination
of nominative set. First, we specify a total function σv1...vn

x1...xn

: VA → VA

associated with it:

σv1...vn
x1...xn

(v) =

{

xi if v = vi.

v otherwise.

Then rv1...vnx1...xn

d = d ◦ σv1...vn
x1...xn

, where ◦ denotes partial functions compo-
sition.

We require another operation, single name overriding,

d▽u 7→ a = d
∣

∣

V−{u}
∪̇ [u 7→ a],

where
∣

∣

W
denotes conventional restriction of function domain and ∪̇

emphasizes that the union is disjoint.

52

Institution for Pure First-Order CNL

Construction VA demonstrates bifunctorial behavior in the follow-
ing way. Let σ : V → V ′, f : A → A′ be two total functions. They
induce several total functions between nominative set domains: func-
tion σA : V ′

A → VA that maps nominative set d ∈ V ′

A to nominative set
d ◦ σ, function Vf : VA → VA′ that maps d ∈ VA to f ◦ d, and function
σf : V ′

A → VA′ defined as d 7→ f ◦d◦σ. Notice that functions induced by
change of set of values and set of names commute under composition:

Vf ◦ σA = σf = σA′ ◦ V ′

f. (2)

2.3 Quasiary predicates

Let Bool = {⊤,⊥} be a Boolean set. The quasiary predicate over set

of names V is a partial Boolean-valued function: VA
p

−→ Bool. Here
letter p over arrow is used to emphasize the partiality of this mapping.
The quasiary predicates over set of names V are called V -quasiary

predicates for short. Let PrVA =
{

p | p : VA
p

−→ Bool
}

.

The truth and falsity domains of p ∈ PrVA are respectively T (p) =
{d | p(d)↓ = ⊤} = p−1 ({⊤}), F (p) = p−1({⊥}).

Definition 1. An extension of a partial predicate p is a pair of its

truth and falsity domains: ‖p‖ = (T (p), F (p)).

Notice that sets in extension of a predicate should be disjoint. There
is a 1-1 correspondence between extensions and partial predicates. Also
there is a natural ordering of extensions:

‖p‖ ⊆ ‖p′‖ if T (p) ⊆ T (p′) and F (p′) ⊆ F (p).

Definition 2. A predicate p is irrefutable if F (p) = ∅.

Similarly to domain of nominative data VA construction PrVA also
has bifunctorial behavior. Given two total maps σ : V → V ′, f : A →

A′ there are total maps PrVf : PrVA′ → PrVA , PrσA : PrVA → PrV
′

A ,

53

A. Chentsov, M. Nikitchenko

Prσf : PrVA′ → PrV
′

A realized as follows. Let p ∈ PrVA′ , q ∈ PrVA , then

PrVf (p) = p ◦ Vf

PrσA(q) = q ◦ σA

Prσf (p) = p ◦ σf.

Once again notice that maps induced by change of set of values and
set of names commute under composition

PrV
′

f ◦ PrσA′ = Prσf = PrσA ◦ PrVf . (3)

2.4 Semantics

The set PrVA is used as a carrier set for most composition-nominative
logics. Compositions have fixed interpretation for CNLs and are defined
as follows

‖p ∨ q‖ = (T (p) ∪ T (q), F (p) ∩ F (q))

‖¬p‖ = (F (p), T (p))

‖∃xp‖ = ({d | d▽x 7→ a ∈ T (p) for some a ∈ A},

{d | d▽x 7→ a ∈ F (p) for all a ∈ A})

(Rv̄
x̄p)(d) = p(rv̄x̄d) = p(d ◦ σv̄

x̄) = p(σ
v̄

x̄A(d)) = Pr
σv̄

x̄

A (p)(d).

Definition 3. A first-order algebra of pure V -quasiary predicates is a
tuple (Pr,A;∨,¬, Rv̄

x̄,∃x) where set Pr ⊆ PrVA is closed under compo-

sitions.

Definition 4. Given a set of names V and predicate symbols Ps a

model of first-order pure quasiary predicates logic is a triple (Pr,A, I)
such that (Pr,A;∨,¬, Rv̄

x̄,∃x) is a pure V -quasiary predicates algebra,

and I : Ps → Pr is a total mapping.

3 Construction of institution

3.1 Outline of adaptation process

Recall the definition of the institution [5, p.27-28].

54

Institution for Pure First-Order CNL

Definition 5. An institution is a tuple I = (Sig,Sen,Mod, |=) where

• Sig is a category of signatures;

• Sen: Sig → Set is a “sentence” functor;

• Mod: Sig → Catop is a contravariant model functor;

• |= ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ |Sig| is a satisfaction

relation;

such that the following holds for any signature morphism ϕ : Σ → Σ′

and sentence e ∈ Sen(Σ):

M ′ |= Sen(ϕ)(e) if and only if Mod(ϕ)(M ′) |= e.

This property is called satisfaction condition.

Knowing the ingredients of institution we can propose steps re-
quired to adopt logic in question as institution:

1. Select signatures and define signature morphisms.

2. Extend signature morphisms to sentence translation maps.

3. Define morphism between models and extend Mod to functor.

4. Provide satisfaction relation and check satisfaction condition.

From these first two steps are straight-forward, the last two are quite
challenging. Next we present considerations on each of the step for
pure first-order CNL.

3.2 Signature morphisms and sentence translation

Generally speaking signature in first-order pure quasiary predicate logic
is a tuple (V, Ps,∨,¬, R

v̄
x̄,∃x). However, since part ∨,¬, R

v̄
x̄,∃x is fixed

and present in any language of pure first-order CNL, we can confine
ourselves to only first two components. Thus signature in first-order
pure quasiary predicate logic is ΣQ = (V, Ps), where V is a set of names,
Ps set of predicate symbols.

55

A. Chentsov, M. Nikitchenko

Definition 6. A morphism of signatures is ϕ = (ϕV , ϕP) : (V, Ps) →
(V ′, P ′

s), where ϕV : V → V ′ is a bijection and ϕP : Ps → P ′
s.

Name component ϕV of signature morphism is restricted to bijec-
tions for several reason. To avoid name clashes in renomination com-
position it has to be 1-1 mapping. Another need to extend Mod to a
functor forces surjectivity requirement on this mapping.

Our category Sig is simply a category of signatures and signature
morphisms.

Now we can extend action of signature morphism to the ΣQ-
sentences defined in (1), i.e. define Sen(ϕ) : Sen(V, Ps) → Sen(V ′, P ′

s).
This is done by induction on structure of the sentence.

Sen(ϕ)(π) = ϕP (π)

Sen(ϕ)(Φ ∨Ψ) = Sen(ϕ)(Φ) ∨ Sen(ϕ)(Ψ)

Sen(ϕ)(¬Φ) = ¬ Sen(ϕ)(Φ)

Sen(ϕ)(∃xΦ) = ∃ϕV (x) Sen(ϕ)(Φ)

Sen(ϕ)(Rv̄
x̄Φ) = R

ϕV (v̄)

ϕV (x̄)
Sen(ϕ)(Φ).

Lemma 1. Sig is a category. Sen is a functor Sig → Set.

In a context where Sen is known expression Sen(ϕ)(Φ) is usually
abbreviated as simply ϕ(Φ).

3.3 Homomorphisms between models

Consider conventional case of pure first-order logic. Model homomor-
phisms are functions f : A → B with predicate preservation property.
For each arity n due to contravariant powerset functor there is an in-
duced map Pn(f) : P(Bn) → P(An) between n-ary predicates. Preser-
vation of n-ary predicate symbol π ∈ Pn means Mπ ⊆ Pn(f)(M

′
π).

An analogous construction for quasiary case is presented in sub-
section 2.3. Let f : A → A′ be a total map. Consider total map
PrVf : PrVA′ → PrVA induced by f . It has some attractive properties.

56

Institution for Pure First-Order CNL

Lemma 2. Function PrVf preserves disjunction, negation and renom-

ination compositions. If f is surjective, it also preserves existential

quantifier composition.

Proof. Let p ∈ PrVA′ , then

T (PrVf (p)) = {d | Vf(d) ∈ T (p)} =
(

Vf
)−1

(T (p)).

Therefore

‖PrVf (p)‖ = (T (PrVf (p)), F (PrVf (p))) = (
(

Vf
)−1

(T (p)),
(

Vf
)−1

(F (p)))

=
(

Vf
)−1

‖p‖.

Let p, q ∈ PrVA′ , then

‖PrVf (¬p)‖ =
(

Vf
)−1

(F (p), T (p)) = ‖¬PrVf (p)‖

‖PrVf (p ∨ q)‖ =
(

Vf
)−1

(T (p) ∪ T (q), F (p) ∩ F (q))

= ‖PrVf (p) ∨ PrVf (q)‖,

where preservation of unions and intersections by preimage is used.
For renomination composition we use commutativity (3):

PrVf (R
v̄
x̄p) = PrVf ◦ Pr

σv̄

x̄

A′ (p) = Pr
σv̄

x̄

A ◦ PrVf (p) = Rv̄
x̄PrVf (p).

Finally, if f : A → A′ is surjective, then

T (PrVf (∃xp)) =
{

d | (f ◦ d)▽x 7→ a′ ∈ T (p) for some a′ ∈ A′
}

= {d | (f ◦ d)▽x 7→ f(a) ∈ T (p) for some a ∈ A}

= {d | f ◦ (d▽x 7→ a) ∈ T (p) for some a ∈ A})

= T (∃xPrVf (p)).

F (PrVf (∃xp)) =
{

d | (f ◦ d)▽x 7→ a′ ∈ F (p) for all a′ ∈ A′
}

= {d | (f ◦ d)▽x 7→ f(a) ∈ F (p) for all a ∈ A}

= F (∃xPrVf (p)).

That is PrVf (∃xp) = ∃xPrVf (p).

57

A. Chentsov, M. Nikitchenko

Thus we only need to formalize preservation of predicates by map
f . There are several ways to accomplish this. Here we do it closest to
conventional case using the extensions of quasiary predicate.

Definition 7. A (V, Ps)-model homomorphism f : (Pr,A, I) → (Pr′,

A′, I ′) is a total map f : A → A′ such that PrVf (Pr′) ⊆ Pr and ‖Iπ‖ ⊆

‖PrVf (I
′
π)‖ for all π ∈ Ps.

Lemma 3. (V, Ps)-models and (V, Ps)-model homomorphisms form a

category |Mod(V, Ps)|.

If this notion of homomorphism is too strict other options include
different relations between extensions or use of implication. Notice that
immediate usage of implication composition is not an option because
implication is not transitive w.r.t. irrefutability. So usage of impli-
cation involves its modification or departing from irrefutability as a
criteria for predicate.

The homomorphisms between models can be generalized as maps
PrVA′ → PrVA that have preservation properties for compositions and
preserve predicates according to chosen rule.

3.4 Reduct functor

Recall that name component of signature morphism is a bijection
ϕV : V → V ′. It induces bijections ϕVA : V ′

A → VA, Pr
ϕV

A : PrVA →

PrV
′

A . This was needed to be able to jump from PrV
′

A to PrVA as Mod-
functor implies. Before working out change of the model let us see how
ϕV affects the extensions of quasiary predicate and how it interacts
with renomination.

Lemma 4. q = Pr
ϕ
−1

V

A (p) if and only if ‖q‖ = ϕVA(‖p‖), i.e. extension
of q equals to pairwise application of ϕVA to extension of p.

Proof. Let p ∈ PrV
′

A , q ∈ PrVA such that q = Pr
ϕ
−1

V

A (p), where ϕ−1

V is
inverse of ϕV . Then

T (q) = {d ∈ VA | d ◦ ϕ−1

V ∈ T (p)}

= {d′ ◦ ϕV | d′ ∈ T (p)} = ϕVA(T (p)).

58

Institution for Pure First-Order CNL

By analogy F (q) = ϕVA(F (p)). Since partial predicate is fully deter-
mined by its extension we conclude the statement of the lemma.

Lemma 5. Following diagram commutes

V ′ V ′
σ
ϕ
V

(v̄)

ϕ
V

(x̄)
//

V

V ′

ϕV

��

V V
σv̄

x̄
// V

V ′

ϕV

��

Next we provide a model transformation.

Lemma 6. Let ϕ : (V, Ps) → (V ′, P ′
s) be a signature morphism and

(Pr′, A, I ′) be a (V ′, P ′
s)-model. Then triple (Pr

ϕ
−1

V

A (Pr′), A, Pr
ϕ
−1

V

A ◦

I ′ ◦ ϕP) is a (V, Ps)-model.

Proof. Suppose that q1,2 ∈ Pr
ϕ
−1

V

A (Pr′). Then there are p1,2 ∈ Pr′ such
that ‖qi‖ = ϕVA(‖pi‖). Then

‖q1 ∨ q2‖ = (T (q1) ∪ T (q2), F (q1) ∩ F (q2))

= (ϕVA(T (p1)) ∪
ϕVA(T (p2)),

ϕVA(F (p1)) ∩
ϕVA(F (p2)))

= (ϕVA(T (p1) ∪ T (p2)),
ϕVA(F (p1) ∩ F (p2)))

= ϕVA(‖p1 ∨ p2‖).

Here we used properties of the image of bijection.

By analogy for q ∈ Pr
ϕ
−1

V

A (Pr′) we have

‖¬q‖ = (F (q), T (q)) = ϕVA(F (p), T (p)) = ϕVA(‖¬p‖).

For existential quantifier

T (∃xPr
ϕ
−1

V

A (p)) =
{

d | (d▽x 7→ a) ◦ ϕ−1

V ∈ T (p) for some a
}

=
{

d | d ◦ ϕ−1

V ▽ϕV (x) 7→ a ∈ T (p) for some a
}

= T (Pr
ϕ−1

V

A (∃ϕV (x)p)).

59

A. Chentsov, M. Nikitchenko

Repeating for falsity domain and combining we derive

∃xPr
ϕ
−1

V

A (p) = Pr
ϕ
−1

V

A (∃ϕV (x)p).

For renomination by lemma 5 we immediately have

Rv̄
x̄Pr

ϕ
−1

V

A (p) = Prσ
v̄

x̄ ◦ Pr
ϕ
−1

V

A (p) = Pr
ϕ
−1

V

A (R
ϕV (v̄)

ϕV (x̄)
p).

Considerations above show that Pr
ϕ
−1

V

A (Pr′) is closed under quasiary

predicates compositions. Thus (Pr
ϕ−1

V

A (Pr′), A;∨,¬, Rx̄
v̄ ,∃x) is a V -

quasiary algebra.
Now notice that we have following diagram

Ps
ϕP

−−→ P ′
s

I′

−→ Pr′
Pr

ϕ
−1

V

A

−−−−→ Pr
ϕ−1

V

A (Pr′)

which means that Pr
ϕ−1

V

A ◦ I ′ ◦ ϕP : Ps → Pr
ϕ−1

V

A (Pr′) and finishes the
proof.

Lemma 7. Given a signature morphism ϕ : (V, Ps) → (V ′, P ′
s) any

(V ′, P ′
s)-model homomorphism f : (Pr′, A, I ′) → (Pr′1, A1, I

′
1) is also

(V, Ps)-model homomorphism f : (Pr
ϕ
−1

V

A (Pr′), A, Pr
ϕ
−1

V

A′ ◦ I ′ ◦ ϕP) →

(Pr
ϕ
−1

V

A1
(Pr′1), A1, P r

ϕ
−1

V

A1
◦ I ′1 ◦ ϕP).

Proof. Proof is based on the fact that maps Pr
ϕ
−1

V

A′ and PrVf commute.
Preservation of predicates by resulting (V, Ps)-model homomorphism
is fully reduced to preservation of predicates by original (V ′, P ′

s)-model
homomorphism.

Corollary 8. Construction

Mod(ϕ)(Pr′, A′, I ′) = (Pr
ϕ
−1

V

A′ (Pr′), A′, P r
ϕ
−1

V

A′ ◦ I ′ ◦ ϕP)

Mod(ϕ)(f) = f

extends Mod to a functor Sig → Cat.

When Mod is known the model resulting from application of reduct
functor Mod(ϕ) to M , i.e. Mod(ϕ)(M), is often abbreviated as M

∣

∣

ϕ
.

60

Institution for Pure First-Order CNL

3.5 Satisfaction relation

First we extend interpretation to all formulas. Due to definition of
quasiary predicate algebras it is quite easy. Let Φ ∈ Sen(V, Ps), M =
(Pr,A, I) ∈ |Mod(V, Ps)|. We define M(Φ) ∈ Pr inductively:

M(π) = I(π)

M(Φ ∨Ψ) = M(Φ) ∨M(Ψ)

M(¬Φ) = ¬M(Φ)

M(∃xΦ) = ∃xM(Φ)

M(Rv̄
x̄Φ) = Rv̄

x̄M(Φ)

In the right-hand side we use interpretation of composition symbols
given in subsection 2.4.

Definition 8. Formula Φ ∈ Sen(V, Ps) is satisfied by (V, Ps)-model

M = (Pr,A, I) ∈ |Mod(V, Ps)|, if predicate M(Φ) is irrefutable, i.e.

F (M(Φ)) = ∅. This is denoted by M |= Φ.

Let us see how change of notation affects interpretation of a formula.

Lemma 9. Given formula Φ ∈ Sen(V, Ps), (V ′, P ′
s)-model M ′ =

(Pr′, A, I ′) and signature morphism ϕ : (V, Ps) → (V ′, P ′
s), the follow-

ing holds:

Pr
ϕ
−1

V

A (M ′(ϕ(Φ))) = M ′
∣

∣

ϕ
(Φ).

Proof. By induction on structure of formula Φ. Let π ∈ Ps be a predi-
cate symbol, then

Pr
ϕ
−1

V

A (M ′(ϕP (π))) = Pr
ϕ
−1

V

A (I ′(ϕP (π))) = Pr
ϕ
−1

V

A ◦ I ′ ◦ ϕP (π)

= M ′
∣

∣

ϕ
(π).

For the following cases we use the argument of the proof of lemma
6 and induction hypothesis:

Pr
ϕ
−1

V

A (M ′(ϕ(Φ ∨Ψ))) = Pr
ϕ
−1

V

A

(

M ′(ϕ(Φ)) ∨M ′(ϕ(Ψ))
)

= Pr
ϕ
−1

V

A

(

M ′(ϕ(Φ))
)

∨ Pr
ϕ
−1

V

A

(

M ′(ϕ(Ψ))
)

= M ′
∣

∣

ϕ
(Φ) ∨M ′

∣

∣

ϕ
(Ψ) = M ′

∣

∣

ϕ
(Φ ∨Ψ)

61

A. Chentsov, M. Nikitchenko

Pr
ϕ
−1

V

A (M ′(ϕ(¬Φ))) = ¬Pr
ϕ
−1

V

A (M ′(ϕ(Φ)))

= ¬M ′
∣

∣

ϕ
(Φ) = M ′

∣

∣

ϕ
(¬Φ)

Pr
ϕ−1

V

A (M ′(ϕ(∃xΦ))) = Pr
ϕ−1

V

A (∃ϕV (x)M
′(ϕ(Φ)))

= ∃xPr
ϕ
−1

V

A (M ′(ϕ(Φ))) = M ′
∣

∣

ϕ
(∃xΦ)

Pr
ϕ
−1

V

A (M ′(ϕ(Rv̄
x̄Φ))) = Pr

ϕ
−1

V

A (R
ϕV (v̄)

ϕV (x̄)
M ′(ϕ(Φ)))

= Rv̄
x̄Pr

ϕ−1

V

A (M ′(ϕ(Φ))) = M ′
∣

∣

ϕ
(Rv̄

x̄Φ).

Corollary 10. Given formula Φ ∈ Sen(V, Ps), (V ′, P ′
s)-model M ′ =

(Pr′, A, I ′) and signature morphism ϕ : (V, Ps) → (V ′, P ′
s), the follow-

ing holds:

M ′ |= ϕ(Φ) if and only if M ′
∣

∣

ϕ
|= Φ.

Proof. By previous lemma F (M ′
∣

∣

ϕ
(Φ)) = ϕVA(F (M ′(ϕ(Φ))). Due to

properties of images the satisfaction condition holds.

By lemma 1, and corollaries 8, 10 we have

Theorem 1. Constructed (Sig,Sen,Mod, |=) form an institution.

This result presents a pure first-order quasiary predicate logic as
institution.

4 Conclusion

In this paper we propose how pure first-order quasiary predicate logic
can be represented as institution. For this all necessary constituents of
institution are provided. We consider possible alternative definitions
of homomorphisms between models of pure first-order CNL. This con-
struction can be further developed to cover other representatives of
CNL family. Other line of research suggests studying the distinctive
features of obtained institutions compared to more conventional ones.

62

Institution for Pure First-Order CNL

References

[1] M. Nikitchenko, S. Shkilniak. Mathematical logic and theory of

algorithms. Publishing house of Taras Shevchenko National Uni-
versity of Kyiv, Kyiv, 2008. (In Ukrainian)

[2] M. Nikitchenko, A. Chentsov. Basics of Intensionalized Data: Pre-

sets, Sets, and Nominats. Computer Science Journal of Moldova,
vol. 20, no. 3(60), 2012, pp. 334–365.

[3] M. Nikitchenko, V. Tymofieiev. Satisfiability in composition-

nominative logics. Central European Journal of Computer Science,
vol. 2, no. 3 (2012), pp. 194–213.

[4] A. Kryvolap, M. Nikitchenko, W. Schreiner. Extending Floyd-

Hoare logic for partial pre- and postconditions. CCIS, vol. 412

(2013), pp. 355–378.

[5] R. Diaconescu. Institution-independent Model Theory. Birkhäuser
Basel, 2008.

[6] D. Sannella, A. Tarlecki. Foundations of Algebraic Specification

and Formal Software Development. Springer, 2012.

[7] B. Pierce. Types and Programming Languages. MIT Press, 2002.

Alexey Chentsov, Mykola Nikitchenko, Received July 12, 2015

Alexey Chentsov

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590511

E–mail: chentsov@ukr.net

Mykola Nikitchenko

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590519

E–mail: nikitchenko@unicyb.kiev.ua

63

Part 2

Theoretical aspects

of software system

development

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Analysis of Nominative Data Sets Structure

Volodymyr G. Skobelev, Ievgen Ivanov, Mykola Nikitchenko

Abstract

The paper deals with several mathematical problems associ-
ated with a mathematical model of data in computing systems
(nominative sets) used in the composition-nominative approach
to software system formalization. In this paper the structure
of the partially-ordered set of nominative sets is investigated in
terms of set theory, lattice theory and algebraic systems theory.
To achieve this aim the correct transferring of basic set-theoretic
operations to nominative sets is investigated in detail. A basic
partially ordered algebraic system intended to provide correct
analogues of basic set-theoretic operations for nominative sets
is elaborated and its structure is investigated. It is established
that this structure is a lower semilattice. Properties of lower and
upper cones of subsets of the poset of nominative sets are investi-
gated in detail. Subsets for which upper cones are non-empty are
characterized. Closed intervals of nominative sets are examined.
Boolean algebra is determined on any such interval. A criterion
for isomorphism of two closed intervals is obtained. Maximal
closed intervals are investigated. It is established that the poset
of nominative sets is a union of isomorphic overlapping maximal
closed intervals.

Keywords: nominative set, nominative data, set theory, lat-
tice theory, algebraic system, lower semilattice, lower and upper
cones, closed intervals.

1 Introduction

Composition-nominative approach [1] aims to give a mathematical ba-
sis for development of formal methods of analysis of software systems.
It is based on several principles, including the Development principle

c©2015 by V.G. Skobelev, I. Ivanov, M. Nikitchenko

65

V.G. Skobelev, I. Ivanov, M. Nikitchenko

(from abstract to concrete), Principle of priority of semantics over

syntax, Compositionality principle, and Nominativity principle. The
latter Nominativity principle states that so called nominative data are
adequate models of data processed and stored in computing systems.
Nominative data are based on naming relations that associate names
and values. The simplest type of nominative data is a nominative
set (or named set) which is a partial function from a set of names
to a class values. It can be considered as a generalization of the no-
tion of a program state considered as a total assignment of values to
variable names. Other types of nominative data represent hierarchical
data organizations [1]. These types of data can represent various data
structures used in programming (e.g. multidimensional arrays, records,
lists, trees, etc.). Other ideas of composition-nominative approach are
that partial functions over nominative data represent semantics of pro-
grams (operating on data). Such functions are constructed from basic
functions using operations called compositions which represent seman-
tics of programming language constructs (e.g. sequential composition,
branching, cycle, etc.). A set of programs (modeled as functions over
nominative data) together with compositions forms an algebraic struc-
ture representing compositional semantics of a language. Thus any
logical theory based on the composition-nominative approach is, in
essence, some formal theory of partial mappings of a special type. Var-
ious associated logics [1] allow reasoning about semantic properties of
programs.

The relevance of the composition-nominative approach increases
significantly in connection with intensive investigation of SMT-solvers
(i.e. intended for testing satisfiability of formulas of 1st-order theories)
[7]. From this viewpoint composition-nominative approach represents
essential development of the theory of equality and uninterpreted func-
tions, the foundations of which were laid in [8].

Although applications are important, composition-nominative ap-
proach is largely an algebraic framework, so it gives a rise to certain
theoretical questions. One of such questions is investigation of nomina-
tive sets from the perspective of abstract algebra with the perspective
of applications of the discovered algebraic properties of mathematical

66

Analysis of Nominative Data Sets Structure

models of program data in automated software analysis and synthesis.
This is the topic of this paper.

The main goal of this paper is analysis of the structure of arbitrary
nominative data sets in terms of partial-ordered sets theory [9], lattice
theory [10] and algebraic systems theory [11].

2 Basic notions

Let V and A be non-empty finite or countable sets of names and data
respectively. The set FV,A of all V -nominative sets over A is the set of
all (possibly, partial) mappings from V to A.

If |A| = 1, then FV,A can be considered as the set B(V) of all subsets
of the set V , while if |V | = 1, then FV,A can be considered as the set
consisting of the empty set and all 1-element subsets of the set A. Thus
in what follows it is supposed that |V | ≥ 2 and |A| ≥ 2.

We will deal with the set GV,A = {graph(f)|f ∈ FV,A}, where
graph(f) = {(v, a) ∈ Domf ×Valf |f(v) = a}.

The following partial ordering can be defined on the set FV,A:

f1 � f2 ⇔ graph(f1) ⊆ graph(f2) (f1, f2 ∈ FV,A). (1)

The least element of the poset FV,A is the V -nominative set 0V,A
with empty domain, while the set of all maximal elements of the poset

FV,A is the set F
(ttl)

V,A of all total V -nominative sets.
Since |A| ≥ 2, for any set of names V (|V | ≥ 2) the poset (FV,A,�)

does not have the largest element. Thus this poset is not isomorphic
to any Boolean algebra.

We write f1 ≺ f2 (f1, f2 ∈ FV,A) if and only if f1 � f2 and f1 6= f2.
By “�” (or, respectively, by “≻”) we denote the relation that is an
inverse of the relation ” � ” (or, respectively, of the relation “≺”).

3 Algebra of nominative sets

In this section we will transfer the basic set-theoretic operations to
the set FV,A with the purpose of providing correct operations on V -

67

V.G. Skobelev, I. Ivanov, M. Nikitchenko

nominative sets over A with perspectives of application in automation
of software development and analysis.

The unary set-theoretic operation of complement of a set cannot be
transferred to FV,A since this set does not contain the largest element.

Let us transfer binary set-theoretic operations to the set FV,A.
There are no difficulties with transferring the set-theoretic opera-

tions of intersection of two sets “∩” and the difference of two sets “\”
to the set FV,A. Indeed, for any f1, f2, f ∈ FV,A we can define:

f1 ∩ f2 = f ⇔ graph(f1) ∩ graph(f2) = graph(f), (2)

f1\f2 = f ⇔ graph(f1)\graph(f2) = graph(f).

Obviously, for any f1, f2 ∈ FV,A the following formulas hold:
Dom(f1∩f2) ⊆ Domf1∩Domf2, f1|X∩f2|Y = (f1∩f2)|X∩Y (X,Y ⊆ V)
and Domf1\Domf2 ⊆ Dom(f1\f2) ⊆ Domf1. The following two
propositions are true:

Proposition 1. Algebraic system (FV,A,∩) is a commutative semi-

group without neutral element, but with zero element which is the V -

nominative set 0V,A with empty domain.

Proposition 2. Algebraic system (FV,A, \) is a non-commutative non-

associative magma in which the V -nominative set 0V,A with the empty

domain is both the right identity element and the left zero element.

A different situation occurs with transferring of the operations of
the union of two sets “∪” and of the symmetric difference of two sets
”⊕ ” to the set FV,A. Indeed, for any f1, f2 ∈ FV,A we get:

graph(f1) ∪ graph(f2) ∈ GV,A ⇔ f1|Domf1∩Domf2 = f2|Domf1∩Domf2 ,

graph(f1)⊕ graph(f2) ∈ GV,A ⇔ f1|Domf1∩Domf2 = f2|Domf1∩Domf2 .

Thus the formulas

f1 ∪ f2 = f ⇔ graph(f1) ∪ graph(f2) = graph(f) (f1, f2, f ∈ FV,A),

f1 ⊕ f2 = f ⇔ graph(f1)⊕ graph(f2) = graph(f) (f1, f2, f ∈ FV,A)

68

Analysis of Nominative Data Sets Structure

can define only partial operations on the set FV,A.

In order to avoid such a situation we transfer the operations “∪”
and “⊕” to the set FV,A as follows: for any f1, f2, f ∈ FV,A we define:

f1 ⊲ f2 = f ⇔ graph(f1) ∪ graph(f2|Domf2\Domf1) = graph(f)

and

f1 ⊞ f2 = f ⇔

⇔ graph(f1|Domf1\Domf2) ∪ graph(f2|Domf2\Domf1) = graph(f).

It is worth noting that these two operations are intended to join
together any two V -nominative sets over A. The operation ” ⊲ ” is
called overlapping (of the second nominative set by the first one), the
operation ” ⊞ ” can be called the exclusive compound. The following
proposition is true:

Proposition 3. For any f1, f2, f3 ∈ FV,A the following formulas hold:

(i) Dom(f1 ⊲ f2) = Domf1 ∪Domf2;

(ii) f1 � f1 ⊲ f2;

(iii) f1 � f2 ⇒ f1 ⊲ f2 = f2 ⊲ f1 = f2;

(iv) (f1 ⊲ f2) ∩ f3 � (f1 ∩ f6) ⊲ (f2 ∩ f3);

(v) f3 ∩ (f1 ⊲ f2) � (f1 ∩ f3) ⊲ (f2 ∩ f3);

(vi) (f1 ∩ f2) ⊲ f3 � (f1 ⊲ f3) ∩ (f2 ⊲ f3);

(vii) f1 ⊲ (f2 ∩ f3) = (f1 ⊲ f2) ∩ (f1 ⊲ f3).

It is not difficult to give examples showing that there may be strict
inequalities in the formulas (ii), (iv)-(vi).

The following theorem is true:

Theorem 1. The algebraic system (FV,A, ⊲) is a non-commutative

monoid with neutral element which is the V -nominative set 0V,A with

the empty domain.

Proposition 1 and Theorem 1 imply that the algebraic system
(FV,A, ⊲,∩) differs from well-known algebraic systems with two binary
operations (i.e. a field, a ring, a semi-ring, etc.). Thus the properties of

69

V.G. Skobelev, I. Ivanov, M. Nikitchenko

the set of all valid formulas in the algebraic system (FV,A, ⊲,∩) can sub-
stantially differ from the properties of the sets of all valid formulas in
standard algebraic systems with two binary operations. The following
proposition is true:

Proposition 4. The algebraic system (FV,A,⊞) is a commutative semi-

group with the neutral element which is the V -nominative set 0V,A with

empty domain.

Since (f1 ⊞ f2) ∩ f3 = (f1 ∩ f3)⊞ (f2 ∩ f3) for any f1, f2, f3 ∈ FV,A,
Propositions 1 and 4 imply that the following theorem is true

Theorem 2. The algebraic system (FV,A,∩,⊞) is a semiring.

Thus we have defined an algebraic system (FV,A,OV,A,RV,A), where
FV,A is the base, OV,A = {∩, \, ⊲,⊞} is the set of operations andRV,A =
{=,�} is the set of relations.

It is worth noting that since the operations ∩ and ⊞ are associative
and can be naturally extended to any finite (consisting of at least two
elements) or infinite sequence of elements of the set FV,A, so that the
notations of the form ∩i∈Ifi and ⊞i∈Ifi do not cause any misunder-
standing.

4 Analysis of the poset (FV,A,�) in terms of lat-

tice theory

The formulas (1) and (2) imply that the poset (FV,A,�) is a lower semi-
lattice such that inf{f1, f2} = f1 ∩ f2 (f1, f2 ∈ FV,A). Thus, all basic
set-theoretic structures defined on lower semilattices can be transferred
to the poset (FV,A,�). Let us analyze these structures.

For any non-empty set S ⊆ FV,A its lower and upper cones are
defined, respectively, using the identities

S▽ = {f ∈ FV,A|(∀f1 ∈ S)(f � f1)},

S△ = {f ∈ FV,A|(∀f1 ∈ S)(f � f1)}.

70

Analysis of Nominative Data Sets Structure

Lower cones of non-empty subsets of the poset (FV,A,�) can be
characterized via the following three propositions:

Proposition 5. For any non-empty subset S ⊆ FV,A:

1) the least element of the lower cone S▽ is the V -nominative set

0V,A with empty domain;

2) the largest element of the lower cone S▽ is ∩f∈Sf .

Proposition 6. For any non-empty subsets S1, S2 ⊆ FV,A the following

formulas hold:

(i) S1 ⊆ S2 ⇒ S
▽

1
⊇ S

▽

2
;

(ii) S1 ⊂ S2&∩f2∈S2\S1
f2 ≺ ∩f1∈S1

f1 ⇒ S
▽

1
⊃ S

▽

2
;

(iii) S1 ∪ S2 ⊆ FV,A ⇒ (S1 ∪ S2)
▽ = S

▽

1
∩ S

▽

2
.

Proposition 7. For any f1, f2 ∈ FV,A the following formulas hold:

(i) {f1}
▽ 6= {f2}

▽ ⇔ f1 6= f2;

(ii) {f1}
▽ ⊆ {f2}

▽ ⇔ f1 � f2;

(iii) {f1 ∩ f2}
▽ = {f1}

▽ ∩ {f2}
▽;

(iv) f2 6� f1 ⇒ {f1 ⊲ f2}
▽ ⊇ {f1}

▽ ∩ {f2\f1}
▽;

(v) f1|Domf1∩Domf2 = f2|Domf1∩Domf2 ⇒

⇒ {f1 ⊲ f2}
▽ = {f1}

▽ ∩ {f2}
▽.

Upper cones of non-empty subsets of the poset (FV,A,�) can be
characterized in the following way:

for any 1-element subset S = {f} (f ∈ FV,A) the following inequal-
ity holds: S△ 6= ∅ (since f ∈ {f}△ for any f ∈ FV,A).

It is worth to note that {0V,A}
△ = FV,A. The following proposition

is true:

Proposition 8. For any (f1, f2 ∈ FV,A) the following formulas hold:

(i) {f1}
△ 6= {f2}

△ ⇔ f1 6= f2;

(ii) {f1}
△ ⊆ {f2}

△ ⇔ f1 � f2.

The next example illustrates that there exist subsets S ⊆ FV,A

(|S| ≥ 2), such that S△ = ∅.

71

V.G. Skobelev, I. Ivanov, M. Nikitchenko

Example 1. Let v ∈ V and a1, a2 ∈ A (a1 6= a2) be fixed elements.

We set S = {f1, f2}, where f1, f2 ∈ FV,A are V -nominative sets over A

such that Domf1 = Domf2 = {v}, f1(v) = a1 and f2(v) = a2.

The formula (1) implies that there does not exist any V -nominative

set f ∈ FV,A, such that f1 � f and f2 � f . Thus, S△ = ∅.

Now we extract subsets S ⊆ FV,A such that S△ 6= ∅.
We will say that elements f1, f2 ∈ FV,A are compatible, if the identity

f1|Domf1∩Domf2 = f2|Domf1∩Domf2 holds. It is evident that if elements
f1, f2 ∈ FV,A are compatible, then the following identity holds

graph(f1 ⊲ f2) = graph(f1) ∪ graph(f2).

Thus we get that for any compatible elements f1, f2 ∈ FV,A the fol-
lowing identities hold: f1 ⊲ f2 = f2 ⊲ f1 = f1 ∪ f2 and {f1 ∪ f2}

▽ =
{f1}

▽ ∩ {f2}
▽.

A non-empty subset S ⊆ FV,A will be called compatible, if its ele-
ments are pairwise compatible. We denote Scmp

V,A the set of all compat-
ible subsets of the set FV,A. The following theorem is true:

Theorem 3. For any set FV,A the following formula holds

(∀S ⊆ FV,A)(S 6= ∅ ⇒ (S△ 6= ∅ ⇔ S ∈ S
cmp

V,A)).

Upper cones of elements of the set S
cmp
V,A can be characterized in

the following way:

Proposition 9. For any S ∈ S
cmp

V,A the following formulas hold:

(i) g.l.b.(S△) = f ⇔ graph(f) = ∪f ′∈S graph(f ′);

(ii) (∀S1, S2 ⊆ S)(∅ 6= S1 ⊆ S2 ⇒ S
△

1
⊇ S

△

2
);

(iii) (∀S1, S2 ⊆ S)(∅ 6= S1 ⊂ S2&

&∪f1∈S1
graph(f1) ⊂ ∪f2∈S2\S1

graph(f2) ⇒ S
△

1
⊃ S

△

2
);

(iv) (∀S1, S2 ⊆ S)(S1 6= ∅&S2 6= ∅ ⇒ S1 ∪ S2 = S
△

1
∩ S

△

2
).

In the poset (FV,A,�) any two elements f1, f2 ∈ FV,A such that
f1 � f2 define a closed interval [f1, f2] = {f ∈ FV,A|f1 � f � f2}. It is
evident that [f1, f2] ∈ Scnst

V,A (f1, f2 ∈ FV,A, f1 � f2).
The following theorem is true:

72

Analysis of Nominative Data Sets Structure

Theorem 4. The algebraic system ([f1, f2], {∪,∩}) (f1, f2 ∈ FV,A; f1 �
f2) is a complete distributive lattice.

On any closed interval [f1, f2] (f1, f2 ∈ FV,A, f1 � f2) the following
unary operation C[f1,f2] can be defined:

C[f1,f2](f) = f ′ ⇔ graph(f ′) = graph(f2)\graph(f) ∪ graph(f1).

The following theorem is true:

Theorem 5. The algebraic system

([f1, f2], {∪,∩,C[f1,f2]}) (f1, f2 ∈ FV,A; f1 � f2)

is a Boolean algebra.

We will say that a mapping ϕ : FV,A → FV,A is isotonic on some
set S ⊆ FV,A (S 6= ∅), if the inequality ϕ(f1) � ϕ(f2) holds for all
f1, f2 ∈ S, such that f1 � f2. It is evident that if ϕ : FV,A → FV,A is any
mapping isotonic onto some closed interval [f1, f2] (f1, f2 ∈ FV,A; f1 �

f2) and the inclusion Valϕ|[f1,f2] ⊆ [f1, f2] holds, then the mapping
ϕ|[f1,f2] has at least one fixed point.

Let f
(i)

1
, f

(i)

2
∈ FV,A (i = 1, 2) be elements such that f

(i)

1
� f

(i)

2
. The

closed intervals [f
(1)

1
, f

(1)

2
] and [f

(2)

1
, f

(2)

2
] are isomorphic, if there exists

a mapping ϕ : FV,A → FV,A such that ϕ|[f1,f2] is bijection of [f
(1)

1
, f

(1)

2
]

onto [f
(2)

1
, f

(2)

2
] for which the identities

ϕ|[f1,f2](f
′ ∪ f ′′) = ϕ|[f1,f2](f

′) ∪ ϕ|[f1,f2](f
′′)

and
ϕ|[f1,f2](f

′ ∩ f ′′) = ϕ|[f1,f2](f
′) ∩ ϕ|[f1,f2](f

′′)

hold for any f ′, f ′′ ∈ [f
(1)

1
, f

(1)

2
].

It is evident that if closed intervals [f
(1)

1
, f

(1)

2
] and [f

(2)

1
, f

(2)

2
]

are isomorphic, then the algebraic systems ([f
(1)

1
, f

(1)

2
], {∪,∩}) and

([f
(2)

1
, f

(2)

2
], {∪,∩}), as well as Boolean algebras

([f
(1)

1
, f

(1)

2
], {∪,∩,C

[f
(1)

1
,f

(1)

2
]
}),

73

V.G. Skobelev, I. Ivanov, M. Nikitchenko

([f
(2)

1
, f

(2)

2
], {∪,∩,C

[f
(2)

1
,f

(2)

2
]
})

are isomorphic.

The following theorem is true:

Theorem 6. A closed interval [f1, f2] (f1, f2 ∈ FV,A; f1 � f2) is iso-

morphic to the closed interval [0V,A, f2\f1].

We will say that a closed interval [0V,A, f] is maximal in the poset

(FV,A,�), if f ∈ F
(ttl)

V,A . The following theorem is true:

Theorem 7. Any two maximal closed intervals in the poset (FV,A,�)
are isomorphic.

Thus the poset (FV,A,�) is a union of the set of overlapping isomor-
phic maximal closed intervals. At the same time, mappings defining
the isomorphism of two intervals differ significantly from each other.
Moreover, the structure of the family of these mappings is sufficiently
complicated. These circumstances, largely cause high internal com-
plexity of various structures defined on the poset (FV,A,�).

5 Conclusions

In the paper a mathematical (algebraic, in essence) formalism intended
for investigating the structure of nominative data sets has been pro-
posed. It forms a part of theoretical foundations for unified develop-
ment of formal methods for automated software design and verification
(at least on the level of functional automation testing).

In this context investigation of algebras of programs over nomina-
tive data is essential. Investigation of this problem on the basis of the
proposed approach may be a topic of the future research.

In the given paper we restricted ourselves to “simple” (flat) nom-
inative data. Elaboration of the proposed approach for hierarchical
nominative data is another topic for the future research.

Resolving the above mentioned problems will create a strong al-
gebraic basis for unified development of formal methods intended for

74

Analysis of Nominative Data Sets Structure

analysis of functions and predicates over nominative data. For inves-
tigation of this problem in the future research the approach presented
in this paper has been developed.

References

[1] V.N. Redko. Backgrounds of compositional programming. Pro-
gramming, No 3 (1979), pp. 3–13. [in Russian]

[2] M.S. Nikitchenko, S.S. Shkilnjak. Mathematical logic and algo-

rithms theory. Kiev National University Press, 2008 [in Ukrainian].

[3] M.S. Nikitchenko, S.S. Shkilnjak. Applied logic. Kiev National Uni-
versity Press, 2013 [in Ukrainian].

[4] N.S. Nikitchenko. A Composition-nominative approach to program

semantics. Technical Report IT-TR 1998-020, Technical Univer
sity of Denmark, ISSN 1396-1608, 1998.

[5] A.V. Lamsweerde. Requirements engineering: from system goals

to UML models to software specifications. Gran Bretaa, Inglaterra,
ISBN: 978-470-01270-3, 2009.

[6] J. Woodcock, P.G. Larsen, J. Bicarregui, J. Fitzgerald. Formal

methods: practice and experience. ACM Computing Surveys, No 4
(2009), pp. 1–36.

[7] V.V. Skobelev. Problem of checking satisfyability for formulas of

solvable theories (a survey). Proc. of IAMM of NAS of Ukraine,
Vol. 26 (2013), pp. 205–221. [in Russian]

[8] W. Ackermann. Solvable cases of the decision problem. The Jour-
nal of Symbolic Logic, No 1 (1957), pp. 68–72.

[9] D.A. Davey, H.A. Priestly. Introduction to lattices and order. Cam-
bridge University Press, 2002.

[10] G. Gratzer. Lattice theory: foundation. Springer, Basel AG, 2011.

75

V.G. Skobelev, I. Ivanov, M. Nikitchenko

[11] R. Lidl, G. Pills. Applied abstract algebra. Springer, NY, 1998.

Volodymyr G. Skobelev, Ievgen Ivanov, Received July 12, 2015

Mykola Nikitchenko,

Volodymyr G. Skobelev

V.M. Glushkov Institute of Cybernetics of NAS of Ukraine

40 Glushkova ave., Kyiv, Ukraine, 03187

Phone: +38 063 431 86 05

E–mail: skobelevvg@mail.ru

Ievgen Ivanov

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590519

E–mail: ivanov.eugen@gmail.com

Mykola Nikitchenko

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590519

E–mail: nikitchenko@unicyb.kiev.ua

76

Part 3

Natural computing

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Natural Computing:

Achievements, Dreams, Limits

(Extended Abstract)

(Invited paper)

Gheorghe Păun

Natural computing is sort of a “fashion” in computer science, a long
lasting one, motivated, on the one hand, by the limits of what we call
“Turing-von Neumann computers” (especially concerning the speed,
but also related to other features, such as the ability of learning, en-
ergy consumption, the “Turing barrier” as the limit of computability,
etc.) and, on the other hand, by the need for new (discrete, infor-
mation handling, algorithmic) tools for various sciences, especially for
biology and biomedicine (but also for many other areas). In this con-
text, important general questions are also raised, such as: what is a
computation?, does nature computes?, what means to compute in a

natural way?, and so on.

There are important achievements of natural computing, at all lev-
els, from mathematical theory to practical applications – but still many
problems remain open. (At an elementary technical level, these asser-
tions will be illustrated with facts from DNA and membrane comput-
ing.)

New areas of theoretical computer science have been developed, old
areas, results, techniques got new incentives, motivations for further
research. The applications are numerous and often impressive. Evo-
lutionary computing, with its many branches, continuously diversified,
is the most illustrative example. New areas appear somewhat period-
ically, together with big words and big promises. DNA computing is
one good example of this kind.

c©2015 by Gh. Păun

78

Natural Computing: Achievements, Dreams, Limits

The main dreams of natural computing are (i) to ”break the NP

barrier” (finding feasible solutions to problems of exponential complex-
ity), (ii) modeling complex objects and phenomena (typical example:
modeling the cell, which is considered as the main challenge of bio-
informatics after the completion of the Genome Project, (iii) to “break
the Turing barrier”. The last research area has an established name,
hypercomputing, many results, a large bibliography, supporters, but
also strong critics (such as Martin Davis, who considered hypercompu-
tation a myth).

Symmetrical to the hypercomputation concept, the term fypercom-

putation was proposed as a name for the research aiming to find poly-
nomial time solutions to non-polynomial problems (the initial ”f” is
taken from ”fast”). Especially fypercomputability is the goal of natu-
ral/unconventional computing, a very important issue from a practical
point of view, although it is expected that ”computing the uncom-
putable” could have even more important consequences than proving
that P = NP.

Actually, except in theory, natural computing was not successful in
fypercomputation, but in finding approximate/probabilistic solutions
to hard problems, or in pushing the feasibility frontiers when looking
for exact solutions. Strategies such as trading space for time or making
use of a massive parallelism work in principle, but they have drastic
practical limits. In turn, evolutionary approaches are the subject of
so-called no free lunch theorems.

In short: good motivations, impressive applications, but, still, many
dreams not yet reached, big words, new names for old stuff – unfor-
tunately, necessary, in view of the current financing system, but not
supported by the reality (“Systems biology: The reincarnation of sys-
tems theory applied in biology?”, asks O. Wolkenhauer in the title of
a paper from Briefings in Bioinformatics, 2001).

What is more important (both theoretically and practically) is that
there exist several “impossibility theorems”, similar to Gödel and Ar-
row theorems, which limit in principle certain performances of natural
computing, making impossible the fulfillment of some dreams. The no
free lunch theorems were invoked before. Similar results are those of

79

Gh. Păun

M. Conrad and R. Gandy, probably similar theorems can be found in
the modeling area.

It is possible to have a limit also in what concerns the “meta-dream”
of building a mathematical (theory of) biology – some people believe
that to this aim essentially new branches of mathematics should be
developed, while Auguste Compte, the positivist philosopher, simply
believed that this is impossible, useless and harmful for biology...

I am not so pessimistic, but a good degree of lucidity is however
necessary...

References

[1] S. Cook. The importance of the P versus NP question. Journal of
the ACM, 50, 1 (2003), pp. 27–29.

[2] M. Conrad. The price of programmability. In The Universal Turing

Machine: A Half–Century Survey (R. Herken, ed.), Kammerer and
Unverzagt, Hamburg, 1988, pp. 285–307.

[3] B.J. Copeland. Hypercomputation. Minds and Machines, 12, 4
(2002), pp. 461–502.

[4] M. Davis. The myth of hypercomputation. In Alan Turing: The

Life and Legacy of a Great Thinker (C. Teuscher, ed.), Springer,
Berlin, 2004, pp. 195-212.

[5] R. Gandy. Church’s thesis and principles for mechanisms. The

Kleene Symposium (J. Barwise et al., eds.), North-Holland, Ams-
terdam, 1980, pp. 123–148.

[6] Gh. Păun. Looking for Computers in the Biological Cell. Af-

ter Twenty Years. The Publ. House of the Romanian Academy,
Bucharest, 2014 (in Romanian).

[7] Gh. Păun, G. Rozenberg, A. Salomaa, eds. The Oxford Handbook

of Membrane Computing. Oxford University Press, 2010.

80

Natural Computing: Achievements, Dreams, Limits

[8] G. Rozenberg, Th. Bäck, J.N. Kok, eds. Handbook of Natural Com-

puting. Springer, Berlin, 2012.

[9] D.H. Wolpert, W.G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1, 67
(1997).

[10] H. Zenil., ed. A Computable Universe. Understanding and Explor-

ing Nature as Computation. World Scientific, Singapore, 2013.

[11] The P Systems Website. http://ppage.psystems.eu.

Gheorghe Păun Received June 16, 2015

Gheorghe Păun

Institute of Mathematics of the Romanian Academy

PO Box 1-764, 014700 Bucureşti, Romania

E–mail: gpaun@us.es

81

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

HPC patterns based implementations

of P systems based solutions

of hard computational problems

Artiom Alhazov Lyudmila Burtseva Svetlana Cojocaru

Alexandru Colesnicov Ludmila Malahov

Abstract

This is an introductory paper of fresh started research that
concerns the development of new HPC parallelization strate-
gies based on intrinsically parallel unconventional computation
paradigms. The main goal of this research is to use theses de-
veloped parallelization technologies for overcoming modern HPC
energy consumption issues. Development of new parallelization
technologies will be focused on a particular type of bio-inspired
models of computation: the membrane computing paradigm.
The solutions for the set of selected problems will be obtained
by application of membrane computing. After that these solu-
tions will be decomposed into elementary steps and HPC pat-
terns will be created for each step using ready libraries in order
to implement proposed solution on HPC efficiently. A pattern
here means an algorithmic skeleton corresponding to a physical
hardware architecture as well as the necessary implementation
libraries. Basing on the feedback of HPC patterns development,
the membrane models would be eventually adjusted in order to
obtain simpler and/or more efficient patterns.

1 Introduction

This work concerns the application of intrinsically parallel membrane
computing paradigms to express hard problem solutions. The aim of

c©2015 by A. Alhazov, L. Burtseva, S. Cojocaru, A. Colesnicov,

L. Malahov

82

HPC patterns based implementations . . .

this application is to use HPC implementations of developed solutions
for speeding-up and scalability improving of the existing classical com-
puting approaches.

The increasing heterogeneity and parallelism of emerging paral-
lel computing environment systems such as Grids and Clouds imply
that parallelization paradigms must be able to adapt to changes in
their requirements. The attempts of traditional approaches solving this
modern parallelization problem have obtained so poor results, that the
limit of ordinary silicon computing devices was declared. Current re-
search shows, however, that the limit is related to algorithmic support
rather than to devices themselves. Overcoming of computation issues
described above will be achieved by the development of new paral-
lelization technologies, in particular ones based on intrinsically parallel
unconventional computation paradigms.

The underlying idea of current research was proposed and tested on
particular problem solution [1]. Although the work [1] proposed just a
simulator of particular P system, the authors implemented this simu-
lator as hardware one. Moreover, to use parallel hardware, researchers
applied natural parallelization strategies of P system computing. The
obtained hardware simulator of the particular P system has significant
productiveness of 2× 107 steps per second.

Our approach is focused on a particular type of models of un-
conventional computation: the bio-inspired “membrane computing”
paradigm, and its models, known as membrane systems or P sys-
tems [2], which reproduce the membrane structure of the biological
cell. P systems perform calculations using a biologically-inspired pro-
cess based upon the structure of biological cells. Although inspired by
biology, the primary research interest in P systems is concerned with
investigating them as a computational model. Membrane computing
is a rapidly expanding research area spanning the fields of computer
science and engineering, image processing, ecosystems modeling, etc.

P systems offer a new computational modeling framework which
integrates the structural and dynamical aspects of cellular systems in
a relevant and comprehensive way, while simplifying the formalization
necessary to perform mathematical and computational analysis. Mem-

83

A. Alhazov et al.

brane computing paradigm is especially attractive because of the ver-
satility and flexibility of the models. P systems have the ability of
managing elements from discrete mathematics because the usage of
multiset rewriting is close to biological notation. Membrane comput-
ing has the algorithmic character that implies easy programmability.
P system paradigm presumes natural scalability and massively paral-
lelism, as well as the modularity of the design.

Summarizing above, the application of P systems paradigm for effi-
cient parallelization and computing resources optimization seems very
important and attractive. Since P systems are intrinsically highly par-
allel, P systems based solutions are conceptually different from the tra-
ditional ones. The HPC techniques permit to put this parallelism into
practice directly. It means HPC implementation of P systems based
solutions rather than simulation of the generic model.

The proposed parallelization technologies are presented in form of
HPC patterns. In this work we mean pattern to be an algorithmic
skeleton corresponding to physical hardware architecture as well as the
necessary implementation libraries.

Since the mentioned above variety of P system types is so large, the
automatic determination of a necessary type for particular problem so-
lution is impossible. Thus the proposed approach does not suppose
development of general-purpose patterns. Designing solutions for par-
ticular problems, we intend to discover reusable patterns. Library of
such reusable patterns is supposed to be main practical result of the
current research.

The proposed speed-up has sense only for those use cases which
are vital to justify costly solutions. The problems of medicine records
and imaging, energy or city traffic management, etc., require everyday
solving, being unavoidably data-intensive.

This is an introductory paper dedicated to the proposed paralleliza-
tion technique. More applications and other aspects like estimations of
efficiency and consumed resources, synchronization, etc., are subject of
further development.

84

HPC patterns based implementations . . .

2 HPC patterns bilateral design process

The idea of application of P systems paradigm for efficient paralleliza-
tion was born at the junction of two domains: HPC and unconventional
computing. The issues of HPC implementation by current classical
computing urges the researchers to look for new parallelization tech-
niques. From the other side, unconventional computing seeks both the
implementation on today’s hardware and the solutions of real life prob-
lems. So, we suppose that scheme of research will be ”bilateral” for
these two domains.

As mentioned above, HPC domain researchers are attempting to
overcome modern HPC energy consuming issues by the development
of new parallelization technologies. In particular, such development
concerns HPC programming techniques, which can be assisted by un-
conventional computing.

Membrane computing, in its turn, is a rapidly expanding research
area on crossroads of the fields of computer science and engineering
including even practical applications. Although the membrane com-
puters do not exist even as prototype, the results of practical problem
solutions obtained by simulators are acceptable. Moreover, an easy
programmability of P system paradigm can significantly support new
programming techniques design. The parallelism is intrinsic to mem-
brane systems due to multiple reasons of its nature: unlike sequential
or some bounded-parallelism models, in P system there is no concept
of CPU or global state, but it is rather the rules that are applied “in
parallel”.

We would like to point out the following guidelines. First, multi-
ple objects evolve in parallel (maximal parallelism is the most studied
derivation mode). Second, additional controls, e.g., promoters or in-
hibitors permit one object to influence an unbounded number of ob-
jects. Third, evolution in different regions happens in parallel (dis-
tributivity).

Adopting the idea proposed by [1] we intend to develop new par-
allelization techniques. These techniques will be presented in form of
detailed description of P system based reusable HPC patterns obtain-

85

A. Alhazov et al.

ing and applying. We set exactly patterns (algorithmic skeletons) as
the results because the main idea of P system computing assistance
to HPC considers support on programming level. Patterns of paral-
lelism permit developers to skip implementation details and to focus
on algorithm structure. The intrinsically parallel algorithm structures
of unconventional computing are main diversity that promises the ad-
vantage against classic computing. Thus, building a “bridge” between
P system computing and HPC consists in process of usage of P system
based patterns by HPC application developer. Patterns usage in im-
plementation on HPC means providing application-specific code that
customizes the pattern behavior.

The authors of work [1] just tested the idea and did not concern with
proposing the methodology. The described research was proceeded in
test-and-errors way, but the main aspect is “bilateral” scheme that we
adopt and intend to develop further.

The main stages of the research will be as follows.

Firstly, the P system based solution will be developed for the set of
selected use cases. Use cases supposed to be selected from the list of
problems already known as resolvable by P systems formalism. Another
reason of selection is the everyday necessity of present problem solution.
Such necessity warrants the usage of expensive HPC computing.

At the second stage the classes of P systems, which are applied for
solutions, are analyzed looking for parallelizable features (for example,
from the GPU point of view). During the analysis, the behavior and
functioning of each P system model will be decomposed into elemen-
tary steps. For each obtained elementary step a HPC implementation
pattern will be defined. Concentrating on P system based technique,
we do intend to research deeply the domain of HPC parallelization pat-
tern development not restricting ourselves by existing techniques. So,
at the final step of second stage, basing on the analysis, the existing
classes of P systems will be adjusted and, in case of inefficiency, new
classes will be defined.

Summarizing the aforesaid, it is evident that the technique of de-
composition into elementary steps and the definition of those steps
content will be the essence of the proposed research. The initial tech-

86

HPC patterns based implementations . . .

nique proposed in research [1] concerns only one particular problem.
Solutions of selected problems are supposed to be source of enhancing
of techniques of decomposition because they would require different
types of P systems.

The results of proposed research will consist generally in methods
of generating of P systems based reusable HPC patterns for implemen-
tation of particular problem solution. The library of P systems based
reusable HPC patterns obtained during research applied to selected
problem solutions can be considered as supplementary result.

An ideal previewed results would be generic parallelization algo-
rithms that take P systems as input and produce HPC programs as
output.

3 Conclusions

In this paper, the introduction of our new research subject is pre-
sented. Presented research concerns the application of intrinsically
parallel membrane computing paradigms to express hard problem so-
lutions. The aim of this application is to use HPC implementations
of developed solutions for speeding-up and scalability improving of the
existing classical computing approaches. It does not mean the creation
of unconventional computing simulators or just direct application of
existing techniques. Instead, we propose the development of new pro-
gramming models and paradigms.

The main objective of research proposed in this paper is to obtain
a new programming methodology for HPC directly through solving
topical, real-life problems.

The fruitfulness of proposed approach is confirmed by existent
working example that showed the significant speed-up against classical
computation approach.

The efficiency assessment supposes to be expressed as increasing
the performance and decreasing the energy consumption.

The main output of the research is previewed in the form of new par-
allelization strategies based on unconventional computing paradigms.

87

A. Alhazov et al.

We concentrated in this paper on presentation of proposed idea.
In our following works we will provide more detailed description of
technique of decomposition into elementary steps as well as method of
presenting and selecting the HPC parallelization patterns.

References

[1] S. Verlan, J. Quiros (2012). Fast Hardware Implementations of P

Systems. In Membrane Computing - 13th International Conference,
CMC 2012, Budapest, Hungary, August 28-31, 2012, Revised Se-
lected Papers.Springer. Lecture Notes in Computer Science, Volume
7762, pp. 404–423.

[2] Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.

Artiom Alhazov, Lyudmila Burtseva, Received July 10, 2015

Svetlana Cojocaru, Alexandru Colesnicov,

Ludmila Malahov

Institute of Mathematics and Computer Science

Str. Academiei 5,

Chişinău, MD-2028,

Moldova

Phone: +373 22 72 59 82

E–mails:

{artiom.alhazov,liudmila.burteva,svetlana.cojocaru,kae,mal}@math.md

88

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Solving Problem of Graph Isomorphism

by Membrane-Quantum Hybrid Model

Artiom Alhazov Lyudmila Burtseva Svetlana Cojocaru

Alexandru Colesnicov Ludmila Malahov

Abstract

This work presents the application of new parallelization
methods based on membrane-quantum hybrid computing to
graph isomorphism problem solving. Applied membrane-quantum
hybrid computational model was developed by authors. Massive
parallelism of unconventional computing is used to implement
classic brute force algorithm efficiently. This approach does not
suppose any restrictions of considered graphs types. The esti-
mated performance of the model is less then quadratic that makes
a very good result for the problem of NP complexity.

1 Introduction

The present paper concerns application of new computational models
based on hybrid of bio-inspired and quantum approaches. In com-
putability theory, a model defines feasible computational operations
with their execution time/space. There are many branches of bio-
computation: evolution, DNA, swarm, etc. We took as our base the
membrane computing formalism, also known as P systems [4].

A P system is a set of mutually inclusive membranes that contain
multisets of objects (numbers, strings, or some abstract items) and
evolve under some rules. All possible rules are applied in parallel to
all possible membranes and objects. This is the membrane parallelism
that makes this computation model very powerful.

In our model, membranes can additionally contain quantum ma-
chines that perform quantum computations (Fig. 1).

c©2015 by A. Alhazov, L. Burtseva, S. Cojocaru, A. Colesnicov,

L. Malahov

89

A. Alhazov et al.

Membrane system

· · ·
qhi

qhj

Quantum systems

· · ·

Figure 1. Structure of the hybrid model

The idea of such hybrid computation arises from needs of differ-
ent domains delivering hard tasks, which are not always satisfactorily
solved by existing high performance computational models.

To illustrate the proposed model, we present in this paper a solu-
tion of the graph isomorphism problem (GI). Due to its practical ap-
plications ranging from chemistry to social sciences, this problem has
been solved by many algorithms, both classical and unconventional,
still remaining under investigation. Unlike problems which are usually
considered as suitable for unconventional computation, GI belongs to
NP, but is not known to belong to its well-studied subsets like P or
NP-complete. The best classical algorithm complexity is O(c

√
n logn),

where n is the number of vertices in the graph.

Because of this uncertainty of general task, it is divided into several
subtasks according graph types (trees, planar graphs, poor-connected,
etc.). The majority of mentioned subproblems are proved to be in the
integer factorization class. So, existence of polynomial-time quantum
algorithm for integer factoring makes GI a good candidate for speedup
by a quantum computing [1]. Further developments of quantum com-
puting solutions of GI mostly applied the quantum walk [6]. However,
all issues attributable for quantum computation such as “probability”
results or exponential growing of system size affect the proposed solu-
tions.

As we said above, we choose the membrane computing formalism.
The proposed hybrid model is the usual P system framework supplied
by capability to perform quantum computations in its membranes.

90

Solving Problem of Graph Isomorphism by Hybrid Model . . .

Membranes, which are supposed to obtain quantum functionality, just
have the specific marks in the P system description. In the marked
membrane, the apparition of some specific objects (quantum data, or
quantum triggers) starts quantum computation. Specified data become
the initial state of the quantum registers. After finishing the quantum
computation produces other specific objects (quantum results) in the
external membrane.

To provide incorporated quantum functionality in the proposed hy-
brid model, standard scheme of quantum device [7] proves itself to be
sufficient.

Both for membrane and quantum part, we use particular P system
formalisms and quantum gates in dependence of the solved problem.

In this paper, the hybrid model solving GI is constructed over de-

cision P system with active membranes implementing brute force algo-
rithm. The quantum devices perform only comparison using CNOT,
NOT and Toffoli gates.

2 Hybrid Computational Model

2.1 Membrane Subsystem

Membrane systems, or P systems, consist of a set of mutu-
ally inclusive membranes. The membrane structure µ is a rooted
tree, traditionally represented by bracketed expression. For example,
[[[]

4
]
2
[]

3
]
1
denotes membranes 2 and 3 inside membrane 1, and

membrane 4 inside membrane 2. There are many different variants of
P systems. Some variants may use static membrane structure, others
change it during calculations.

Membranes contain multisets of objects. Objects are numbers,
strings, or some abstract items. Different operations over objects may
be available. The initial state of a P system is always provided. The
initial state is some membrane structure with some multisets inside.

The evolution of a P system is governed by a set of rules. Rules
are applicable under certain conditions to change the objects in mem-
branes. All possible rules are applied in parallel to all possible mem-

91

A. Alhazov et al.

branes and objects (membrane parallelism). The calculation stops
when no rules can be applied.

We will use a decision P system with active membranes. Deci-

sion means that the alphabet of objects contains symbols yes and no

that represent two possible results of calculation. P system with active

membranes is defined as a tuple:

Π = {O,E, µ,w1, · · · , wm, e1, · · · , em, R}.

Here O is the alphabet of objects. E = {0, 1, ..., k} is a set of membrane
electrical charges, or polarizations. µ is a membrane structure of m
membranes labeled by integers; we will denote H = {1, . . . ,m} a set of
membrane labels. wi ∈ O∗ and ei ∈ E, i ∈ H, represent initial content
and initial polarization of the i-th membrane. Strings wi over alphabet
O (possibly empty) represent multisets of objects from O. R is a set
of rules of the form:
(a) [a → v]ih, a ∈ O, v ∈ O, h ∈ H, i ∈ E (evolution rules, used in

parallel in the region of the h-th membrane, provided that the
polarization of the membrane is i);

(b) a[]ih → [b]jh, a, b ∈ O, h ∈ H, i, j ∈ E (communication rules,
sending an object into a membrane and possibly changing the
polarization of the membrane);

(c) [a]ih → []jhb, a, b ∈ O, h ∈ H, i, j ∈ E (communication rules,
sending an object out of a membrane, possibly changing the po-
larization of the membrane);

(d) [a]ih → b, a, b ∈ O, h ∈ H, i ∈ E (membrane dissolution rules; in
reaction with an object, the membrane is dissolved);

(e) [a]ih → [b]j
h
[c]kh, a, b, c ∈ O, h ∈ H, i, j, k ∈ E (division rules for el-

ementary membranes not containing other membranes inside; in
reaction with an object, the membrane is divided into two mem-
branes with the same label, possibly of different polarizations,
and the object specified in the rule is replaced in the two new
membranes by possibly new objects).

92

Solving Problem of Graph Isomorphism by Hybrid Model . . .

2.2 Quantum Subsystem

The investigated hybrid model supposes additionally that in any mem-
brane the apparition of some specific objects (quantum data, or quan-
tum triggers) starts a quantum calculation. The said data are avail-
able as initial state of the quantum registers. After its termination
the quantum calculation produces another specific objects (quantum
results) inside the membrane. From the P system point of view, the
quantum calculation is a step of the membrane calculation.

Quantum device. We suppose a standard quantum device avail-
able for quantum calculations. The quantum device contains qubits
organized in quantum registers. It works in three steps: non-quantum
(classical) initialization of qubits when they are set in base states; quan-
tum transformation when the qubits are non-observable; non-quantum
(classical) measurement that produces the observable result.

Several restriction are imposed over the quantum device. Each
qubit contain 0, or 1, or (during quantum calculation) superposition
of both. Therefore, the initial data and the result may be regarded as
non-negative integers in binary notation. The quantum transformation
is linear and reversible. The general rule is that arguments and results
are kept in different quantum registers. Another general condition is
that the ancillary qubits were not entangled with the argument and
the result after the calculation.

The construction of a quantum computer shown in Fig. 2 guarantees
this.

3 Interface between Membrane and Quantum

Sub-systems

Communications between membrane and quantum sub-systems are
performed through input/output signals and triggering (Fig. 3).

We define the hybrid system formally as a tuple

β = (Π, T, T ′,HQ, QN , QM , Inp,Outp, t, qh1
, · · · , qhm

).

93

A. Alhazov et al.

|y〉M

|x〉N

|w〉R

|z〉K

Vf

|f(x)〉
M

CM

|ψx,z〉N+R+K−M

|f(x)〉
M

V
†

f

|y ⊕ f(x)〉M

|x〉N

|w〉R

|z〉K

Figure 2. Quantum calculation; initialization and measurement are not
shown

Here, Π is a P system, and HQ = {h1, · · · , hm} is a subset of membrane
labels in Π used for quantum calculations. T is a trigger and T ′ is the
signal on obtaining the quantum result. Sub-systems qh1

, · · · , qhm
are

the quantum sub-systems associated to the corresponding membranes
from HQ. The rest of the components of the tuple β specify the inter-
action between Π and qhj

, 1 ≤ j ≤ m (Fig. 3).

Membrane subsystem Quantum subsystem(s)

Interfaceobjects states

β = (Π qh1
, · · · , qhm

), · · · ,

Figure 3. Subsystems and interface in the hybrid model

For simplicity, we assume that the running time of quantum sub-
systems of the same type is always the same. To keep this time general,
we include a timing function t : HQ → N: the quantum computation
in a sub-system of type qhj

takes t(hj) membrane steps. It is an open
general question how to calculate the timing of quantum calculation
with respect to the timing of membrane calculation. We could use as
the first rough estimation that quantum calculation takes three steps
of membrane calculation (initialization, quantum transformation, mea-
surement).

The input size (in qubits) for quantum systems is given by QN :

94

Solving Problem of Graph Isomorphism by Hybrid Model . . .

HQ → N. The output size (in bits) for quantum systems is given by
QM : HQ → N.

We would like to define the behavior of β in all possible situations,
so we introduce the trigger T ∈ O, where O is the alphabet of Π. The
work of a quantum sub-system of type qhj

starts whenever T appears
inside the corresponding membrane. Note that we said that qhj

is a
type of a quantum sub-system, because in general there may be multiple
membranes with label hj containing quantum sub-systems with the
same functionality. The quantum state is initialized by objects from
Inp(hj) = {Ok,hj ,b | 1 ≤ k ≤ QN (hj), b ∈ {0, 1}} ∪ {T}, so Inp :

HQ → 2O is a function describing the input sub-alphabet for each type
of quantum sub-system, the meaning of object Ok,hj,b being to initialize
bit k of input by value b. We require that the set of rules satisfies the
following condition: any object that may be sent into a membrane
labeled hj must be in Inp(hj).

The output of quantum sub-systems is returned to the membrane
system in the form of objects from Outp(hj) = {Rk,hj ,b | 1 ≤ k ≤

QM (hj), b ∈ {0, 1}} ∪ {T ′}, the meaning of object Rk,hj,b being that
the output bit k has value b. In case of one-bit output, we often denote
it yes and no.

The result of a quantum sub-system may be produced in the mem-
brane together with object T ′.

There are two possibilities to synchronize quantum and membrane
levels. We can use a timing function and to wait for the quantum result
by organizing the corresponding delay in membrane calculations, or we
can wait for appearance of the resulting objects, or the trigger T ′.
For generality, our model provides both possibilities. The topic needs
further investigations.

4 Graphs Isomorphism Problem

GI requires to decide whether two given graphs G1 = (V,E1) and
G2 = (V,E2) are actually the same graph with relabeling of the vertices.

95

A. Alhazov et al.

4.1 Graph Isomorphism: Hybrid Computation

The first graph is represented by objects a
(c)

i,j,0,0,0, where c = 1 if the
graph has edge (i, j), and c = 0 if it does not, 0 ≤ i ≤ n− 1, 0 ≤ j ≤

n − 1. The second graph is similarly represented by objects b
(c)

i,j,0. Let

N = ⌈log2 n⌉ (hence, n ≤ 2N < 2n). We construct the following hybrid
system.

β = (Π,Hq = {2}, n, Inp,Outp = {yes, no}, q2), where

Inp = {Ik,b | 0 ≤ k ≤ 2n2, 0 ≤ b ≤ 1},

q2 is a quantum system comparing the first n2 bits with the second

n2 bits in 2N + 1 steps, which is described later, and

Π = (O,Σ, µ = [[]0
2
]0
1
, w1, w2, R, 1)

is a decisional P system with active membranes, where

Σ = {a
(c)

i,j,0,0,0, b
(c)

i,j,0 | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1, c ∈ {0, 1}},

O = {di | 1 ≤ i ≤ nN} ∪ {pi | 1 ≤ u ≤ (n+ 2)N + 5} ∪ {yes, no,X}

∪ {xi,t,k,s | 0 ≤ i < n, 0 ≤ t < n, 0 ≤ k ≤ N, 0 ≤ s ≤ max(2k−1, 0)},

∪ {a
(c)

i,j,t,k,s | −2N ≤ i < n, −2N ≤ j < n, 0 ≤ t ≤ n,

0 ≤ k ≤ N, 0 ≤ s ≤ max(2k−1, 0), c ∈ {0, 1}},

∪ {b
(c)

i,j,t | 0 ≤ i < n, 0 ≤ j < n, 0 ≤ t ≤ nN + 1, c ∈ {0, 1}}.

w1 = p1, w2 = d1x0,0,0,0 · · · xn−1,0,0,0,

and the set R is the union of the following rule groups (together with
their explanations): generation, checking, processing the input, and
result. Note that the all four groups start working in parallel.

Generation

1 : [di]
e

2
→ [di+1]0

2
[di+1]1

2
, e ∈ {0, 1}, 1 ≤ i ≤ nN,

2 : [dnN+1]e
2
→ []0

2
dnN+1, e ∈ {0, 1},

1: creating 2nN membranes and generating for each of them the
corresponding nN bits defining the permutations candidates. Other
objects may check these bits as membrane polarizations during nN

steps (not considering the initial step, where the polarization was 0).

96

Solving Problem of Graph Isomorphism by Hybrid Model . . .

2: After the generation phase, set the polarization to 0.

Checking

3 : [xi,t,k,s → xi,t,k+1,2s+e]e
2
, 0 ≤ i < n,

0 ≤ t < n, 0 ≤ k ≤ N − 1, 0 ≤ s ≤ max(2k−1 − 1, 0), e ∈ {0, 1},
4 : [x2s+e,t,N,s → λ]e

2
, 0 ≤ s ≤ 2N−1 − 1, 0 ≤ t < n, e ∈ {0, 1},

5 : [xi,t,N,s → xi,t+1,1,0]e
2
, 0 ≤ i < n,

0 ≤ t < n− 1, 0 ≤ s ≤ 2N−1 − 1, e ∈ {0, 1}, i 6= 2s+ e,

6 : [xi,n−1,N,s → X]e
2
, 0 ≤ i < n,

0 ≤ s ≤ 2N−1 − 1, e ∈ {0, 1}, i 6= 2s+ e,

7 : [X]0
2
→ []1

2
X,

3: Compute the value σ(t) of permutation σ for node label t.

4: Erase the label σ(t).

5: Continue matching the label.

6: Rename unmatched node labels into X (to make the next step
deterministic).

7: Invalid permutation detected. Cancel isomorphism check by
setting polarization to 1.

Processing the input

8 : [a
(c)

i,j,t,k,s
→ a

(c)

i,j,t,k+1,2s+e
]e
2
, −2N ≤ i < n, −2N ≤ j < n,

0 ≤ t < n, 0 ≤ k ≤ N − 1, c ∈ {0, 1}, 0 ≤ s ≤ max(2k−1 − 1, 0),

9 : [a
(c)

i,j,t,N,s → a
(c)

i′,j′,t+1,1,0
]e
2
, −2N ≤ i < n, −2N ≤ j < n,

0 ≤ t < n, c ∈ {0, 1}, 0 ≤ s ≤ 2N−1 − 1,
i′ = −2s− e− 1, i = t, i′ = i otherwise,
j′ = −2s− e− 1, j = t, j′ = j otherwise,

10 : [a
(c)

−i−1,−j−1,n,1,0 → Ini+j,c]
0

2
, 0 ≤ i < n, 0 ≤ j < n,

c ∈ {0, 1},

11 : [b
(c)

i,j,t → b
(c)

i,j,t+1
]e
2
, 0 ≤ i < n, 0 ≤ j < n,

0 ≤ t ≤ nN, e ∈ {0, 1}, c ∈ {0, 1},

12 : [b
(c)

i,j,nN+1
→ In2+ni+j,c]

0

2
, 0 ≤ i < n, 0 ≤ j < n, c ∈ {0, 1},

8: Compute σ(t) for matrix elements.

9: Perform row/column substitution if row/column is t. If so, store
the result as a negative index, minus one. In either case, proceed with
the next node.

97

A. Alhazov et al.

|a1〉

|a2〉

...

|b1〉

|b2〉

...

|0〉

Figure 4. Quantum comparator

11: The input symbols for the second graph wait while the permu-
tations for the first graph are being generated.

10,12: Initialize the quantum subsystem.

Result

13 : [yes]0
2
→ []1

2
yes,

14 : [yes]0
1
→ []

1
yes,

15 : [pi → pi+1]0
1
, 1 ≤ i ≤ (n+ 2)N + 4,

16 : [p(n+2)N+5]0
1
→ []1

1
no, 1 ≤ i ≤ (n+ 2)N + 4.

13: If the quantum subsystem detected a match, send this signal
out to the skin.

14: Send the final answer yes out, also halting the computation.

15: Wait for the possible answer yes to appear.

16: If it did not appear in time, send the final answer no.

4.2 Quantum Comparison

Quantum comparison is shown in Fig. 4. It uses CNOT, NOT and
Toffoli gates. The result is produced on the qubit initialized by |0〉
(the lowest in the diagram).

98

Solving Problem of Graph Isomorphism by Hybrid Model . . .

4.3 Notes on Complexity

The classical general algorithm solves GI for graphs of n vertices in
time O(c

√
n logn), were c is a constant [3].

Quantum computation has been widely employed at GI solving
during last decade. Initially, users of classic algorithms just applied
the Grover method for search between relabeled candidates. But for
graphs with n nodes a naive application of Grover search means O(

√
n!)

queries, so some other quantum methods have been proposed to im-
prove the efficiency. The most popular of these methods seems to be
the quantum walk [6]. The computation complexity of GI solution ap-
plying quantum walk is declared for graph with n vertices as O(n7) for
discrete quantum walk [2] and as O(n6) for continuous one [5].

In the presented GI solution the P system part of computation
takes 2⌈(log2 n)⌉ + 1 steps. Supposing the pure P system computa-
tion the algorithm could execute the comparison of each pairs (candi-
date/pattern) by 2 steps. Totally the pure P system based comparison
would take 2n2 steps.

We will count the quantum subsystem comparison as 3 steps. So,
the whole work time is (n+ 2)⌈(log2 n)⌉+ 4.

5 Conclusions

This paper concerns the application of membrane-quantum hybrid com-
putational model to speed up the classical brute force algorithm solving
the problem of graph isomorphism.

Membrane-quantum hybrid computational model is the P system
framework with additional quantum functionalities. With this ap-
proach, we obtained computation time advancement against both pure
membrane and pure quantum solutions, namely: O(n log2 n) (hybrid)
against O(n2) (pure membrane) and O(n6) (pure quantum).

99

A. Alhazov et al.

References

[1] S. Dorn. Quantum Algorithms for Graph and Algebra Problems.

VDM Verlag (2008).
[2] B.L. Douglas, J.B. Wang, Classical approach to the graph isomor-

phism problem using quantum walks. Journal of Physics A: Mathe-
matical and Theoretical 41(7) (2008).

[3] J. Kobler, U. Schoning, J. Toran. The graph isomorphism problem:

its structural complexity. Birkhauser Verlag (1994).
[4] Gh. Păun.Membrane Computing. An Introduction. Springer (2002).
[5] X. Qiang, X. Yang, J. Wu, X. Zhu. An enhanced classical approach

to graph isomorphism using continuous-time quantum walk. Journal
of Physics: A Mathematical and Theoretical 45(4) (2012).

[6] K. Rudinger, J.K. Gamble, E. Bach, M. Friesen, R. Joynt, S.N.
Coppersmith. Comparing algorithms for graph isomorphism using

discrete- and continuous-time quantum random walks. Journal of
Computational and Theoretical Nanoscience 10(7), 1653–1661(9)
(2013).

[7] C.P. Williams. Explorations in Quantum Computing. Springer
(2008).

Artiom Alhazov, Lyudmila Burtseva, Received June 17, 2015

Svetlana Cojocaru, Alexandru Colesnicov,

Ludmila Malahov

Institute of Mathematics and Computer Science

Str. Academiei 5,

Chişinău, MD-2028,

Moldova

Phone: +373 22 72 59 82

E–mail: {artiom.alhazov,lyudmila.burtseva,svetlana.cojocaru,kae,mal}@math.md

100

Part 4

Theoretical issues

in automated

reasoning

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Admissibility, compatibility, and deducibility in

first-order sequent logics

Alexander Lyaletski

Abstract

The paper is devoted to the notions of admissibility and com-
patibility and their influence on deducibility in different sequent
logics including first-order classical and intuitionistic ones as well
as their modal extensions. Results on the coextensivity of the
proposed sequent calculi and usual Gentzen and Kanger sequent
calculi are given.

Keywords: First-order classical logic, first-order intuition-
istic logic, first-order modal logic, sequent calculus, deducibility,
admissibility, compatibility, coextensivity, validity.

1 Introduction

Investigations in computer-oriented reasoning gave rise to the appear-
ance of various machine methods for the proof search in first-order
logics. Particularly, Gentzen sequent calculi [1] modified for their im-
plementation on a computer have found many applications in computer
science. But in the case of classical logic their practical application as
a logical technique (without preliminary skolemization) of the intelli-
gent systems has not received wide use: preference is usually given to
the resolution-type methods. This is explained by higher efficiency of
the resolution-type methods as compared to sequent calculi, which is
mainly connected with different possible orders of the quantifier rule
applications in sequent calculi while resolution-type methods, due to
skolemization, are free from this deficiency.

In its turn, the deduction process in sequent calculi reflects suf-
ficiently well natural theorem-proving methods which, as a rule, do

c©2015 by Alexander Lyaletski

102

Admissibility, compatibility, and deducibility . . .

not include preliminary skolemization so that reasonings are performed
within the scope of the signature of the initial theory. This feature of se-
quent calculi becomes important when some interactive mode of proof
is developed since it is preferable to present the output information
concerning the proof search in the form usual for man. Besides, pre-
liminary skolemization is not a valid operation for many non-classical
logics including intuitionistic one while many of such logics have a wide
application in solving reasoning problems. That is the problem of the
efficient quantifier manipulation makes its appearance.

When quantifier rules are applied, some substitution of selected
terms for variables is made. To do this step of deduction sound, certain
restrictions are put on the substitution. A substitution, satisfying these
restrictions, is said to be admissible. Here we investigate the classical
notion of an admissible substitution and show how it can be modified
so that efficient sequent calculi can be finally obtained both for classical
and non-classical logics using the so-called compatibility (if necessary).
(For simplicity, we restrict us by a detailed enough consideration of
classical and intuitionistic logics without equality briefly discussing a
possibility to extend them to the equality and modal cases.)

For our purpose, we use modifications of the calculi LK and LJ with-
out equality from [1] and denote them by mLK and mLJ respectively.
Moreover, we extend mLK and mLJ in a certain way for logics with
equality and modal rules. At that, we don’t touch upon any procedure
of selection of propositional rules and terms substituted, focusing our
attention on quantifier handling only. Also note that in contrary to [1]
and [2], the antecedents and succedents of all the sequents under con-
sideration are assumed to be multisets. As usual, inference search in
any calculus is of the form of a so-called inference tree “growing” from
bottom to top in accordance with counter-applying inference rules. An
inference tree all leaves of which are axioms is called a proof tree.

2 Genzen’s notion of admissibility

Classical quantifier rules, substituting arbitrary structure terms when
applied from bottom to top, are usually of the following form slightly

103

Alexander Lyaletski

distinguished from the one given in [1]:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left)

Γ → A[t/x],∆

Γ → ∃xA,∆
(∃ : right)

where the term t is required to be free for the variable x in the formula A
and A[t/x] is the result of the simultaneous replacement in A of x by t.
This restriction of the substitution of t for x gives Gentzen’s (classical)
notion of an admissible substitution, which proves to be sufficient for
the needs of the proof theory. But it becomes useless from the point of
view of efficiency of computer-oriented theorem-proving methods. It is
clear from the following example.

Consider a sequent A1, A2 → B, where A1 is ∀x1∃y1(R1(x1) ∨
R2(y1)), A2 is ∀x2∃y2(R1(y2) ⊃ R3(x2)), and B is ∃x3∀y3(R2(x3) ∨
R3(y3)). The provability of this sequent in calculus LK will be estab-
lished below, while here we notice that quantifier rules must be applied
to all the quantifiers occurring in A1, A2, and B. Therefore, classical
notion of admissible substitution yields 90 (= 6!/(2!*2!*2!)) different
orders of the quantifier rule applications to A1, A2 → B. It is clear
that resolution type methods allow avoiding this redundant work.

3 Kanger’s notion of admissibility

To optimize procedure of the applications of quantifier rules, S.Kanger
suggested in [3] his Gentzen-type calculus, denoted here by K. In cal-
culus K a “pattern” of a deduction tree is first constructed with the
help of special variables, the so called parameters and dummies. At
some times an attempt is made to convert a “pattern” into a proof tree
to complete the deduction process. In case of failure, the process is
continued. The main difference between K and LK consists in a special
modification of the above quantifier rules and in a certain splitting (in
K) of the process of the “pattern” construction into stages. In K the
rules (∀ : left) and (∃ : right) are of the following form:

Γ, A[d/x] → ∆

Γ,∀xA → ∆
d/t1, ..., tn

Γ → A[d/x]∆

Γ → ∃xA,∆
d/t1, ..., tn

104

Admissibility, compatibility, and deducibility . . .

where t1, . . . , tn are terms occurring in the conclusion of the rules, d is a
dummy, and d/t1, . . . , tn denotes that when an attempt is made to con-
vert “pattern” into a proof tree, the dummy d must be replaced by one
of the terms t1, . . . , tn. The replacement of dummies by terms is made
in the end of every stage, and at every stage the rules are applied in a
certain order. This scheme of the deduction construction in calculus K
leads to a notion of the Kanger-admissible substitution, which is more
efficient than the classical one. Thus in the above example it yields
only 6 (=3!) variants of different possible orders of the quantifier rule
applications (but none of these variants is preferable). Despite this,
the Kanger-admissible substitutions still did not allow attaining the
efficiency comparable with that when the skolemization is made. It is
due to the fact that, as in case of the classical admissible substitution,
it is required to select a certain order of the quantifier rule applications
when an input sequent is deduced, and, if it proves to be unsuccessful,
the other order of applications is tried, and so on.

4 New notion of admissibility

For constructing the modification mLK of calculus LK from [1], let us
introduce a new notion of an admissible substitution in order to get
rid of the dependence of the deduction efficiency in sequent calculi on
different possible orders of quantifier rule applications. The main idea
is to determine, proceeding from quantifier structures of formulas of
an input sequent and a substitution under consideration, would there
exists a sequence of desired quantifier rules applications. (This notion
was used in [4] in slightly modified form for another purpose.)

We assume that besides usual variables there are two countable sets
of special variables, namely of parameters and dummies.

A substitution is defined as a finite (maybe, empty) set of ordered
pairs, every of which consists of a variable and a term and is written
in the form t/x, where x is a variable and t a term of substitution

[5]. For a sequent tree D, D · s denotes the result of the simultaneous
replacement of all the variables of s by the corresponding terms of s.

Let P be a set of sequences of parameters and dummies and s a

105

Alexander Lyaletski

substitution. Put T (P, s) = {〈z, t, p〉 : z is a variable of s, t a term
of s, p ∈ P , and z lies in p to the left of some parameter from t}.
The substitution s is said to be admissible for P if and only if (1) the
variables of s are only dummies and (2) in T (P, s) there are no elements
〈z1, t1, p1〉, . . . , 〈zn, tn, pn〉 such that t2/z1 ∈ s, . . . , tn/zn−1 ∈ s, t1/zn ∈

s (n > 0).

5 Admissibility and classical deducibility

As in the case of calculus LK, its modification mLK deals with formulas,
except that in mLK every formula from a sequent has a (possibly,
empty) sequence of parameters and dummies. Thus, it is convenient to
define calculus mLK with help of the pairs 〈p,A〉, where A is a formula
and p a sequence (word) of parameters and dummies. Also, it will be
assumed that the empty sequence is always added to all formulas from
an initial sequent (that is, from a sequent to be proved).

The rules of the calculus mLK are the following:

Propositional rules:
Γ, 〈p,A〉, 〈p,B〉 → ∆

Γ, 〈p,A ∧B〉 → ∆

Γ → 〈p,A〉,∆ Γ → 〈p,B〉,∆

Γ → 〈p,A ∧B〉,∆

Γ, 〈p,A〉 → ∆ Γ, 〈p,B〉 → ∆

Γ, 〈p,A ∨B〉 → ∆

Γ → 〈p,A〉,∆

Γ → 〈p,A ∨B〉,∆

Γ → 〈p,B〉,∆

Γ → 〈p,A ∨B〉,∆

Γ, 〈p,A〉 → 〈p,B〉,∆ Γ, 〈p,B〉 → ∆

Γ, 〈p,A ⊃ B〉 → ∆

Γ, 〈p,A〉 → 〈p,B〉,∆

Γ → 〈p,A ⊃ B〉,∆

Γ, 〈p,A〉 → ∆ Γ, 〈p,B〉 → ∆

Γ, 〈p,A ∨B〉 → ∆

Γ → 〈p,A〉,∆

Γ → 〈p,A ∨B〉,∆

Γ → 〈p,B〉,∆

Γ → 〈p,A ∨B〉,∆

Γ → 〈p,A〉,∆

Γ, 〈p,¬A〉 → ∆

Γ, 〈p,A〉 → ∆

Γ → 〈p,¬A〉,∆

Contraction rules:

Γ, 〈p,A〉, 〈p,A〉 → ∆

Γ, 〈p,A〉 → ∆
(Con →)

Γ → 〈p,A〉, 〈p,A〉∆

Γ → 〈p,A〉,∆
(→ Con)

106

Admissibility, compatibility, and deducibility . . .

Quantifier rules:

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p, ∀xA〉 → ∆
(∀ : left′)

Γ → 〈pz,A[z/x]〉,∆

Γ → 〈p, ∀xA〉,∆
(∀ : right′)

Γ, 〈pz,A[z/x]〉 → ∆

Γ, 〈p, ∃xA〉 → ∆
(∃ : left′)

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p, ∃xA〉,∆
(∃ : right′)

Here d is a new dummy, z is a new parameter, p is a sequence of
parameters and dummies, Γ and ∆ are arbitrary multisets of pairs,
consisting of sequences (of dummies and parameters) and formulas, A
and B are arbitrary formulas.

In what follows, the establishing of the deducibilty of a sequent
A1,. . . , Am → B1, . . . , Bn in LK is replaced by the establishing of
the deducibilty of the so-called initial sequent 〈, A1〉,. . . ,〈, Am〉 →

〈, B1〉, . . . , 〈, Bn〉, but yet in mLK or its modifications (A1,. . . ,Am,

B1, . . . , Bn are formulas of the first-order language).
Applying first a rule from bottom to top to a sequent under con-

sideration and afterwards to its “heirs”, and so on, we finally obtain a
so-called inference tree for this sequent.

Let D be an inference tree in mLK and s a substitution. If all the
leaves of D · s are axioms, then D is called a latent proof tree in mLK
w.r.t. s.

The main result concerning the calculus mLK is as follows.

Theorem 1. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order

language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LK

if and only if there exist an inference tree D in mLK for the initial

sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of

terms without dummies for all the dummies of D such that: (1) D is a

latent proof tree in mLK w.r.t. s and (2) s is an admissible substitution

for the set of all the sequences of parameters and dummies from D.

Proof. (=>) Let D be a proof tree for the input sequent 〈, A1〉, . . . ,

〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 in the calculus mLK, and s be a substitution,
which converts all the leaves of D into axioms and is admissible for the
set P of all sequences of parameters and dummies from D. Without
any loss of generality, we may assume that terms of s do not contain

107

Alexander Lyaletski

dummies for otherwise these dummies could be replaced by a special
constant, say, c0. Since s is admissible for P , it is possible to construct
the following sequence p consisting of parameters and dummies which
form the sequences of P :

(i) every p′ ∈ P is a subsequence of p and

(ii) s is admissible for {p} (i.e. there is no an element 〈z, t, p〉 ∈

T (p, s) such that t/z ∈ s.
Such a sequence p may be generated, for example, by the convo-

lution algorithm from [4], applied to a list of all the sequences from
P provided that in the convolution algorithm parameters are treated
as existence quantifiers, and dummies as universal quantifiers. The
property (i) of the sequence p and definition of the propositional and
quantifier rules permit to make the following assumption:

WhenD was constructed, propositional, contraction, and quantifier
rules were applied (from bottom to top) in the order that corresponds
to looking through p from the left to right: i.e. when the first quantifier
rule was applied, the first variable (a parameter or a dummy) of p was
generated, when the second quantifier rule was applied, the second
variable of p was generated, and so on.

Now it is possible to convert the tree D into a proof tree D′ for the
input sequent A1, . . . , Am → B1, . . . , Bn in calculus LK. To do this,
let us “repeat” the process of the construction of D in the above-given
order p and execute the following transformations:

1) Suppose that in a processed node of D one of the following rules
was applied:

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p,∀xA〉 → ∆
(∀ : left′) or

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p,∃xA〉,∆
(∃ : right′)

and t/d ∈ s for some term t. The term t is free for d in A, because the
order of applications of quantifier rules is reflected by p, and the prop-
erty (ii) is satisfied. Hence, the admissibility in the classical (Gentzen)
sense will be observed when the above rules (∀ : left′) and (∃ : right′)
are replaced in D by the rules (∀ : left) and (∃ : right) of LK:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left) or

Γ → A[t/x]∆

Γ → ∃xA,∆
(∃ : right)

108

Admissibility, compatibility, and deducibility . . .

and all occurrences of d in D are replaced by t.

2) In other cases the rules of the calculus mLK are replaced in
D by their analogues from LK by a simple deleting of sequences of
parameters and dummies from these rules. It is evident that D′ is a
deduction tree in the calculus LK. Furthermore, the way of conversion
of D into D′ allows making the conclusion that leaves of D′ are axioms
of the calculus LK. Thus, D′ is a proof tree for the initial sequent A1,

. . . , Am → B1, . . . , Bn.

(<=) Let D’ be a proof tree for the initial sequent A1, . . . , Am

→ B1, . . . , Bn in LK. Convert D′ into a tree D, which, as it can be
seen below, is a proof tree for the initial sequent 〈, A1〉, . . . , 〈, Am〉

→ 〈, B1〉, . . . , 〈, Bn〉 in mLK. For this purpose “repeat” (from bottom
to top) a process of construction of D′, replacing in D′ every rule ap-
plication by its analogue in mLK and subsequently generating a sub-
stitution s. (Initially s is the empty substitution.)

1) If an applied rule is one of the following:

Γ, A[t/x] → ∆

Γ,∀xA → ∆
(∀ : left) or

Γ → A[t/x]∆

Γ → ∃xA,∆
(∃ : right)

then it is replaced by

Γ, 〈pd,A[d/x]〉 → ∆

Γ, 〈p,∀xA〉 → ∆
(∀ : left′) or

Γ → 〈pd,A[d/x]〉,∆

Γ → 〈p,∃xA〉,∆
(∃ : right′)

accordingly with adding t/d to the existing substitution s, where d is
a new dummy, and with substituting d for those occurrences of t into
“heirs” of the formula A[t/x], which appeared as a result of applying
of a replaced rule inserting the term t.

2) In all other cases replacement of the rules of LK by the rules of
mLK is evident. (Note that 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 is
declared as input sequent of D.) The rules (∀ : left) and (∃ : right)
may be considered as those inserting new parameters). Since D′ is a
proof tree in the calculus utilizing the classical notion of an admissible
substitution, then it is clear that the finally generated substitution s is
admissible (in the new sense) for a set of all sequences of parameters

109

Alexander Lyaletski

and dummies from D. Therefore, D is a proof tree for the initial
sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 in mLK.

To demonstrate the deduction technique, consider the sequent
A1, A2 → B from the above-given example and establish its deducibil-
ity in the calculus LK. To do this, construct a proof tree for the initial
sequent 〈, A1〉,〈, A2〉 → 〈, B〉 in mLK and use Theorem 1.

Applying to the initial sequent first the rule (→ Con) and then
only quantifier rules in any order we can deduce the following sequent:
〈d1z1, R1(x1) ∨ R2(y1)〉, 〈d2z2, R1(y2) ⊃ R3(x2)〉 → 〈d3z3, R2(d3) ∨
R3(x3)〉, 〈d4z4, R2(d4)∨R3(x4)〉, where d1, . . . , d4 are dummies, z1, . . . ,
z4 parameters.

Now let us apply propositional rules to the last sequent as long as
they are applicable. As a result, we get the inference tree, D. If we
generate the substitution s = {z2/d1, z3/d2, c0/d3, z1/d4} (c0 is a spe-
cial constant), then we can draw the following conclusions concerning s

and D: (1) every leaf from D is transformed into an axiom by applying
of s to it and (2) s is admissible for the set of all sequences of dummies
and parameters from D.

So, in accordance with Theorem 1 the sequent A1, A2 → B is de-
ducible in the calculus LK.

Draw your attention to the fact that the selection of an order of the
quantifier rules applications in mLK is immaterial; it can be any.

6 Compatibility and intuitionistic deducibility

The intuitionistic calculus LJ is distinguished from LK by that the
succedent of any sequent deduced in LJ should contain no more than
one formula [1]. In this connection it seems that this restriction putting
on mLK can lead to a correct intuitionistic modification of the classical
calculus mLK, say, mLJ. Unfortunately, it is not so, and the following
example demonstrates this fact.

Consider the sequent ¬∀P (x) → ∃y¬P (y). Obviously, it is de-
ducible in LK while it is not deducible in LJ.

Let us construct a proof tree D in mLK for it:

110

Admissibility, compatibility, and deducibility . . .

〈d, P (d)〉 → 〈z, P (z)〉
〈d, P (d)〉 → 〈,∀xP (x)〉
〈,¬∀xP (x)〉, 〈d, P (d)〉 →
〈,¬∀xP (x)〉 → 〈d,¬P (d)〉
〈,¬∀xP (x)〉 → 〈,∃y¬P (y)〉

where d is a dummy and z a parameter.
Denote it byD and consider the substitution s = {z/d}. It converts

the first sequent of D into an axiom and is admissible for D. By
Theorem 1, the sequent ¬∀P (x) → ∃y¬P (y) is deducible in LK.

The succedent of any sequent in D contains only one formula.
Therefore, the usage of only the notion of admissibility is not enough for
providing the “sound” deducibility in mLJ for the sequents deducible
in LJ and only in it.

This situation can be corrected with the help of the notion of the
so-called compatibility of a constructed proof tree with a selected sub-
stitution [6]. Because of the paper size limit, this notion will not be
detailed below. We note simply that after introducing both the no-
tions of admissibility and compatibility in mLJ, they correlate with
each other in such a way that provide the soundness (and complete-
ness) of inference search. For example, the above-given tree D for the
sequent ¬∀P (x) → ∃y¬P (y) is not compatible with the unique “reason-
able” substitution s = {z/d}, which implies that ¬∀P (x) → ∃y¬P (y)
is not deducible in LJ.

The following result takes place for intuitionistic logic.

Theorem 2. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order

language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LJ

if and only if there exist an inference tree D in mLJ for the initial

sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of

terms without dummies for all the dummies of D such that: (1) D is

a latent proof tree in mLJ w.r.t. s, (2) s is an admissible substitution

for the set of all sequences of parameters and dummies from D, and

(3) D is compatible with s.

Draw your attention to the fact that Theorems 1 and 2 are distin-
guished by only the existence of (3) in the wording of Theorem 2.

111

Alexander Lyaletski

7 Admissibility, compatibility, deducibility in

equality and modal extensions

Let LK≈ and LJ≈ be, respectively, the calculi LK and LJ extended to
the case of classical and intuitionistic logics with equality (denoted by
≈) by means of introducing in them the Kanger equality rules from [3].

Let us introduce in mLK and mLJ the following modifications of
the Kanger equality rules (denoting these equality extensions by mLK≈

and mLJ≈ respectively):

Γ|t
′

t′′ , 〈p, t
′ ≈ t′′〉 → ∆|t

′

t′′

Γ, 〈p, t′ ≈ t′′〉 → ∆

Γ|t
′

t′′ , 〈p, t
′′ ≈ t′〉 → ∆|t

′

t′′

Γ, 〈p, t′′ ≈ t′〉 → ∆

where the terms t′ and t′′ do not contain dummies and Γ|t
′

t′′ and ∆|t
′

t′′

are the results of the simultaneous replacement of t′ by t′′ in Γ and ∆
respectively.

As in [3], in mLK≈ and mLJ≈ the defined equality rules are ap-
plied in inference search last of all, i.e. when it seems impossible to
construct such a tree D without applying equality rules and select such
a substitution s that the conditions (1), (2), and (3) from Theorems 1
and 2 are satisfied.

Let D be an inference tree constructed in mLK≈ (mLJ≈) without
applying equality rules and s a substitution. Suppose that after sub-
sequent applying of only the equality rules to all the leaves of D · s

not being axioms, then to their “heirs”, and so on, an inference tree
containing only axioms is produced. Then D is called a latent proof

tree in mLK≈ (mLJ≈) w.r.t. s.

Theorem 3. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order

language. The sequent A1, . . . , Am → B1, . . . , Bn is deducible in LK≈

(LJ≈) if and only if there exist an inference tree D in mLK≈ (mLJ≈)

for the initial sequent 〈, A1〉, . . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a

substitution s of terms without dummies for all the dummies of D such

that: (1) D is a latent proof tree in mLK≈ (mLJ≈) w.r.t. s, (2) s is

an admissible substitution for the set of all the sequences of parameters

and dummies from D, and, in the case of mLJ≈, (3) the tree D is

compatible with s.

112

Admissibility, compatibility, and deducibility . . .

Our way of the constriction of modal calculi has a certain correlation
with the papers [7] as well as [8], where necessary modal rules are simply
added to Gentsen’s calculi LK and LJ.

Doing the same for LK and LJ and LK≈ and LJ≈, we define
their modal extensions LK+Modm, LJ+Modm, LK≈+Modm, and
LJ≈+Modm, where Modm is a set of modal rules.

As to modal rules adding to LK, LJ, LK≈, and LJ≈ if necessary,
any such a modal rule is considered to be of the following form:

Γ,Φ1, . . . ,Φk → Ψ1, . . . ,Ψr,∆

Γ,©1(Φ1), . . . ,©k(Φk) → ©′
1
(Ψ1), . . . ,©′

r(Ψr),∆

where ©1, . . . ,©r,©
′
1, . . . ,©

′
r are modal operators and Φ1, . . . , Φk,

Ψ1, . . . , Ψr multisets of formulas (containing, possibly, modal opera-
tors). For example, it makes possible to determine the calculus GK or
GS4 from [8] containing the standard modal operators � and ♦.

Any modal rule of this form transformed into the corresponding
modal rule of the following form (that can be introduced in any of the
calculi mLK, mLJ, mLK≈, and mLJ≈):

Γ′, 〈p1,Φ1〉, ..., 〈pk ,Φk〉 → 〈q1,Ψ1〉, ..., 〈qr ,Ψr〉,∆
′

Γ′, 〈p1,©1(Φ1)〉, ..., 〈pk ,©k(Φk)〉 → 〈q1,©
′
1
(Ψ1)〉, ..., 〈qr ,©′

r(Ψr)〉,∆′

where, p1, . . . , pk, q1, . . . , qr are sequences of dummies and parameters.
Draw your attention to that any such rule satisfies the subformula

property, which makes obvious the following proposition in virtue of
Theorems 1, 2, and 3.

Theorem 4. Let A1, . . . , Am, B1, . . . , Bn be formulas of the first-order

language containing, possibly, modal operators. The sequent A1,. . . , Am

→ B1, . . . , Bn is deducible in LK+Modm (LJ+Modm, LK≈+Modm,

LJ≈+Modm) if and only if there exist an inference tree D in LK+Modm
(LJ+Modm, LK≈+Modm, LJ≈+Modm) for the initial sequent 〈, A1〉,

. . . , 〈, Am〉 → 〈, B1〉, . . . , 〈, Bn〉 and a substitution s of terms without

dummies for all the dummies of D such that: (1) D is a latent proof

tree in LK+Modm (LJ+Modm, LK≈+Modm, LJ≈+Modm) w.r.t. s,

(2) s is an admissible substitution for the set of all the sequences of

parameters and dummies from D, and, in the cases of LJ+Modm and

LJ≈+Modm, (3) the tree D is compatible with s.

113

Alexander Lyaletski

The Kanger calculus K without equality is coextensive with the
Gentzen calculus LK. It is easy to see that all the above-described
constructions made for LK can be transferred to the case of K pro-
ducing an analogue of mLK for K and its intuitionistic modification
as well as their equality and modal extensions retaining the results on
coextensivity.

Taking into consideration all the above-given theorems, we can ob-
tain the soundness and completeness theorem for any of our calculi if
and only if this theorem takes place for its Gentzen or Kanger analogue.
For example, we conclude that the validity of a formula F in classical
(intuitionistic) logic with equality is equivalent to the deductibility of
the initial sequent → 〈, F 〉 in mLK≈ (mLJ≈).

8 Conclusion

The research presented in this paper demonstrates that the usage of
the introduced notions of admissibility and compatibility gives a good
enough decision of the problem of quantifier handling in first-order log-
ics. They are easily built-in into the Gentzen calculi LK and LJ, which
shows that there is a good basis for constructing computer-oriented
sequent calculi for classical and intuitionisticl logics as well as for their
equality and modal extensions. At that, the questions of the machine
implementation of such sequent calculi are not considered because the
construction of efficient calculi requires optimizing the order of the
propositional rule applications and selecting a method for generating a
substitution which can produce a latent proof tree. Bypassing details
observe that the Robinson unification algorithm combined with the new
notion of admissibility is suitable for generating such substitutions.

This approach to the construction of methods for inference search
in first-order logics corresponds well to a modern vision of the so-called
Evidence Algorithm, EA, advances by V. M. Glushkov as early as 1970.
For classical logic it has found its reflection in the deductive engine of
the system for automated deduction SAD designed in the accordance
with the EA requirements to automated theorem proving (see the Web-
site “nevigal.org” as well as the papers [9–14]).

114

Admissibility, compatibility, and deducibility . . .

References

[1] G. Gentzen. Untersuchungen uber das logische Schliessen. Math.
Zeit. (1934), 39, pp. 176–210.

[2] J.H. Gallier. Logic for computer science: Foundations of automatic

theorem proving. Book. New York: Harper and Row, Inc., 1986,
513 pp.

[3] S. Kanger. A simplified proof method for elementary logic. In book:
Computer Programming and Formal Systems. Studies in Logic
and the Foundations of Mathematics. Amsterdam: North-Holland,
Publ. Co., 1963, pp. 87–93.

[4] A.V. Lyaletski. Variant of Herbrand theorem for formulas in prefix

form . Kibernetika (1981), 1, pp. 112–116. In Russian.

[5] J.A. Robinson. A machine-oriented logic based on resolution prin-

ciple. J. of the ACM (1965), 12(1), pp. 23–41.

[6] A. Lyaletski and B. Konev. Tableau method with free variables

for intuitionistic logic. Intelligent Information Processing and Web
Mining (2006), pp. 153–162.

[7] L.A. Wallen. Automated proof search in non-classical logics. Book.
Oxford University Press, 1990, 240 pp.

[8] O. Hiroakira. Proof-theoretic methods in non-classical logic — an

introduction. In book: Theories of Types and Proofs. Mathemati-
cal Society of Japan, Tokyo, 1998, pp. 207–254.

[9] Yu. Kapitonova, A. Letichevsky, A. Lyaletski, and M. Mo-
rokhovets. Algoritm Ochevidnosti - 2000 (a project). Proc. of the
1st Int. Conf. UkrPROG’98, Kiev, Ukraine, 1998, pp. 68–70.

[10] A. Degtyarev, A. Lyaletski, and M. Morokhovets. Evidence Algo-

rithm and sequent logical inference search. Lecture Notes in Arti-
ficial Intelligence, vol. 1705 (1999), pp. 99–117.

115

Alexander Lyaletski

[11] A. Degtyarev, A. Lyaletski, and M. Morokhovets. On the EA-Style

integrated processing of self-contained mathematical texts. In book:
Symbolic Computation and Automated Reasoning: A K Peters,
Ltd, USA, 2001, pp. 126–141.

[12] A. Lyaletsky, K. Verchinine, A. Degtyarev, and A. Paskevich. Sys-
tem for Automated Deduction (SAD): Linguistic and deductive pe-

culiarities. Advances in Soft Computing: Intelligent Information
Systems 2002, 2002, pp. 413–422.

[13] K. Verchinine, A. Lyaletski, and A. Paskevich. System for Au-

tomated Deduction (SAD): A tool for proof verification. Lecture
Notes in Artificial Intelligence, 4603 (2007), pp. 398–403.

[14] A. Lyaletski and K. Verchinine. Evidence Algorithm and

System for Automated Deduction: A retrospective view.
AISC’10/MKM’10/Calculemus’10 Proceedings of the 10th ASIC
and 9th MKM International Conference, and 17th Calculemus
Conference on Intelligent Computer Mathematics, Paris, France,
2010, pp. 411–426.

Alexander Lyaletski Received July 28, 2015

Alexander Lyaletski

Taras Shevchenko National University of Kyiv

Address: Volodymyrska str., 64, 01601 Kyiv, Ukraine

Phone: (+38)(044)2293003

E–mail: lav@unicyb.kiev.ua

116

Part 5

Logics in

informatics

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Universics: an Axiomatic Theory of Universes

for the Foundations

Part 1. Foundational Completeness

Ioachim Drugus

Abstract

This is the first part of a paper in 2 parts presenting an
axiomatic theory called “universics” of mathematical structures
called “universes” – structures like the “von Neumann universe”,
“Grothendieck universes” and the “universes of discourse” of ax-
iomatic theories. Universics is pivoted around a “reduction prin-
ciple” expressed as an axiom scheme and manifesting both as a
generalized epsilon-induction principle in set theory and, dually,
as a principle of deduction in logic. The methodology of univer-
sics is to discuss about the reality in terms of “universes” treated
a special kind of structures, rather than to discuss about it in
terms of “theories”. As a motivation for this research served the
Harvey Friedman’s desideratum to develop a new foundational
theory richer than set theory, which would be essentially based
on a generalized induction principle and into which, partially
or completely, could be immersed set theory. This desideratum
emerged due to the “foundational incompleteness” of set theory
– a property manifesting as impossibility to represent in its lan-
guage all mathematical structures and concepts. The main result
of this Part 1 is an “explication”, i.e. a presentation in strict
terms of universics, of the notion “foundational completeness”.
In Part 2 an algebraic set theory based on the ideas of universics
is developed, which is believed to achieve the Friedman’s desider-
atum.

Keywords: induction, deduction, reduction, well-founded-
ness, universics

c©2015 by I. Drugus

118

Universics: an Axiomatic Theory of . . . Part 1

1 Introduction

“Universics” is a term used by the author and, independently, by sev-
eral philosophers, for a “theory of universes”. The treatment of a phe-
nomenon from the perspective of “the Universe”, or from the point of
view of “multitude of universes” idea is referenced (by philosophers) as
“universic approach” – a term which has a meaning different from that
of the term “universal”. A term which sounds closely correlated with
“universics” is “multiverse” – a term used to refer to the multitude of
set theories, viewed from the perspective of their universes of discourse
– a multitude, which emerges due to various methods of constructing
universes, among which the best known is “forcing method” [1, 2]. The
difference between two approaches is that universics is a theory of sepa-
rate mathematical structures called “universes”, while in the approach
using the “multiverse”, the universes are treated as parts of one large
universe of discourse called “multiverse”.

In this paper, universics obtains the features of a mathematical
discipline with its specific methodology, which can be described as di-
rect discourse about “universes of objects” versus the indirect discourse
specific to the currently wide-spread methodology, which involves the-
ories for which these universes are called “universes of discourse”. Due
to this methodology concepts like “universe of ideas”, “universe of ob-
jects” or “universe of structures” emerge, which are structures without
theories to describe them, and the “universe of theories” is the frame-
work for explication of the notion “foundational completeness”.

The “universes of sets” called “Grothendieck universes” were de-
fined by Grothendieck as a foundation for category theory – a founda-
tion which was needed, since the main concepts of this theory cannot
be expressed in terms of the ZF set theory, or in terms of the von NBG
(Neumann-Bernays-Godel) class theory – both previously considered
“foundational”. To be more specific, the “category of categories” is one
of the key concepts of category theory, since “functor”, “adjointness”,
“natural equivalence” and other central notions which determine the
value of this theory, are defined proceeding from the idea that “category
of categories” exists. But the existence of such an object presupposes

119

I. Drugus

the existence of the “class of classes” – a concept which is “contradic-
tory in itself”, because such a class cannot be a member of any other
class by the definition of “proper class”. Moreover, category theory
also uses such notions as “functor of functors”, which imply existence
of “proper classes of proper classes” – objects utterly unadmissible in
any set theory or class theory. Thus, neither ZF nor NBG can be said
to be really “foundational” for mathematics.

On the other hand, surprisingly or not, only one of the Grothendieck
universes turns out to be sufficiently rich to serve as a “founda-
tion for mathematics” – true, to the same extent as ZF, i.e. as
an “incomplete foundation”. This illustrates the necessity to have
the concept “foundational completeness” for a theory, and this con-
cept was introduced by Harvey Friedman in one of his messages
in the automated email list FOM (“Foundations of Mathematics”
https://cs.nyu.edu/pipermail/fom/1997-November/000143.html). As
it was stated by Friedman, set theory “does not come close to do-
ing everything one might demand of a foundation for mathematics”
and, thus, it is not “foundationally complete” for mathematics.

In addition to the strong conceptual reasons mentioned above for
the statement that set theory is foundationally incomplete for math-
ematics, one can also state that set theory is foundationally incom-
plete for informatics, since it is too poor for the representation of
the data structures used in informatics. On the other hand, no ar-
guments were found in favor of the statement that category theory,
founded on Grothendieck universes, or just these universes may be
foundationally incomplete. Therefore, a theory of universes, contain-
ing the Grothendieck universes, can be expected to be a foundationally
complete theory. The main result of this Part 1 of the paper is the
“explication”, i.e. presentation in precise terms, of the notion “foun-
dational completeness”.

As an informal theory, universics was developed in several publi-
cations [3, 4], where universes were treated as the largest structures,
similarly to how the proper classes called “universes” are treated in
set theory. There are two main differences between set theory and
universics – (1) set theory studies conceptions which are obtained by

120

Universics: an Axiomatic Theory of . . . Part 1

abstraction from any kind of order, but the “universes” about which
universics discusses are structures – universics is essentially “structural-
ist”, (2) set theory studies “small scale” objects, but universics studies
any structures, but could be said essentially to be about the “large
scale” objects.

In previous publications on universics, the structures were consid-
ered as built by repetitive application of three operations, called “aggre-
gation”, “association”, “atomification” – operations for building sets,
ordered pairs and atoms, respectively. The reason for the choice of
these notions as a starting point in building a foundational theory is
the belief that the notions “set”, “ordered pair” and “atom” are suf-
ficient to serve as a “conceptual orthogonal basis” for a universe of
concepts, where any concept can be reduced to this basis. This con-
ceptuality is intended to describe the “fabric” of a universe, and could
be called “small scale universics”. The current paper presents a the-
ory of structures called “universes”, which can be called “large scale
universics”. Since the “fabric” of a universe is irrelevant here, any
knowledge of those publications is not required for understanding the
current paper.

2 On the terminology and conceptuality used

in this paper

Universics is primarily intended to serve for the metamathematical
analysis of various foundational theories. The terms used in a meta-
discourse necessarily contain an amount of referential ambiguity and
this section is intended to minimize such ambiguity for some terms.
Also the conceptuality behind these terms will be clarified. In order
that a term needing explanation can be easily found while reading the
main text, the terms explained in this section are italicized.

A universe of discourse is correlated with a theory, which is said
to “discuss” about the entities populating the universe, or to “de-
scribe” the universe. But there are clearly specified universes (like
Grothendieck universes), for which no theory describing them have

121

I. Drugus

been presented. Also, the von Neumann universe was invented as a
view upon the totality of sets and only later it was found that ZF the-
ory extended with terms for the ranks of the sets can describe it. This
reasoning shows that the notion “universe” is to be treated as a notion
on its own, prior to be correlated with a theory and to be called its
“universe of discourse”. Also, two theories may have the same universe
of discourse and this fact also supports the treatment of universes as
objects on their own.

The expression universe of sets is used alongside the expression “the
universe of discourse of a set theory”. Since in universics, the notion
“universe” is treated on the same footing as the notion “theory”, this
practice will be preferred here, and expressions like universe of ideas,
universe of objects, universe of structures will be used here, alongside
the well-established term “universe of discourse”.

Fraenkel used the term “object” for the entities in a universe. But
since anything populating a universe is called “object”, the expression
“universe of objects” does not sound to be a good term. There is,
though, a special case, when this term is the most appropriate one
– this is when one opposes a “universe of ideas” to a “universe of
objects” (to use the expression “universe of material things” instead of
“universe of objects” would be incorrect, since an object in a “universe
of objects” can also be an idea). Thus, the term universe of objects

will be used here to express a meaning opposed to the meaning of the
term “universe of ideas”. The relationship between the elements of one
of these universes with the elements of the other universe is called here
reflection – more precisely, the universe of ideas is said to “reflect” the
universe of objects.

An example of a “universe of objects” is the totality of all the things
called “sets”, “classes”, “classes-as-many” – a term introduced by Rus-
sel to refer to collections which better reflect the plural of a noun than
the notion of “class”, “multi-sets” , or “aggregates” – a generic term
introduced also by Russel for any kind of set-like objects. The algebraic
“set theory” presented in Part 2 is weaker than the currently known (to
the author) set theories and its objects are called “aggregations”. This
term was chosen to be close to “aggregates” to emphasize that these are

122

Universics: an Axiomatic Theory of . . . Part 1

“generic set-like objects” like those of Russel, but it is different from
“aggregates” to admit that they might be conceptions different from
those ntended by Russel, also these objects are obtained by application
of an operation of building sets called “aggregation”.

The term collection is commonly used for an intuitive notion gen-
eralizing the notions of set and of class, without specifying whether or
not a multi-set is a collection. Here a collection is presupposed to have
no repeating elements, i.e. to be a set or a class. The exclusion of
“multi-sets” from the denotata of the term “collection” does not mean
that the multi-sets are excluded from universics – on the contrary, the
set theory developed from the ideas of universics in Part 2 of this pa-
per is essentially a multi-set theory. The exclusion of multi-sets from
denotata of the term “collection” is just a convention about the use of
the term “collection” in this paper.

The term “collection” is convenient in metamathematical analysis,
especially, in discussions about the universes of discourse of set theories,
where the notion of “size” (see below) is irrelevant to the topic of the
discourse. In set theory, a set is treated as a class which is a member
of another class. There are also classes which are not members of other
classes, and these are called “proper classes”. The modifiers “small”
and “big” are applied to the noun “collection” to distinguish between
sets and proper classes this manner: “small collection” is a synonym
for “set”, “big collection” is a synonym” for “proper class”.

The modifiers “small” and “big” reference two values on a scale
called “size” expressed in terms of the membership relation “∈” – a
“big collection” is a maximal collection within the universe of collec-
tions governed by the membership relation, and a “small collection” is
not maximal in this universe. This dimension can be also referenced
as “height/depth” (depending on the perspective from which the mem-
bership relation is viewed). Accordingly, in category theory, a category
with a big collection of objects and morphisms is said to be a “big
category”, and one with such a collection small, is said to be a “small
category”.

The universe of discourse of a set theory, let this be ZF, is a proper
class (i.e. a “big collection”), but there are also other proper classes,

123

I. Drugus

and a question arises: “what singularizes the universe of discourse of
ZF among other proper classes and makes it a ‘universe’ other than
being a ‘universe of discourse’?”. This question cannot be answered
in terms of “size”, as this term is treated today. Here, yet another
dimension needs to be considered, which is referenced as “extension” –
a collection C will be said to have a smaller extension than a collection
D, if C ⊆ D. Notice, that in addition to being “big” in size, the universe
of discourse of ZF also has the largest extension, and this answers
the question regarding what singularizes the universe of discourse. To
account for both “size” and “extension” dimensions, in universics the
terms small scale and large scale will be used.

Finally, notice that the word “idea” is treated here as a term. Lo-
gicians consider the things used in a theory to be of two kindss – “no-
tions” and “assertions” and they use the generic term idea for them
(here, the “notions” can be – “properties”, “relations”, “functions”,
“operations”, etc.). A theory is also an “idea” which can be treated as
an inhabitant of a universe of ideas. If a universe of ideas is populated
only by theories, the universe will be called “universe of theories”.

3 What is a universe?

Since the notion of universe originates in logic, one can get a hint on
what kind of mathematical structure is a universe exactly from logic,
and namely from the definition of the notion “axiomatic theory”, or
shorter, “theory”. Logicians define a theory as an entity which has a
basis consisting of ideas of two sorts – “basic notions” and “axioms”
(i.e. assertions, which are “postulated”, or “posited in the basis”).
Also, they consider the other ideas of the theory as obtained either by
definition or deduction. To simplify the terminology, since axioms are
“posited in the basis” of the theory, they can be called “basic asser-
tions” (similar to “basic notions). Also, since the process of definition
and the process of deduction are similar, the term reduction will be
used for both these processes. According to this definition of the notion
“theory”, a theory uses two sorts of entities – notions and assertions.
But one can admit that the notions are missing from a theory, and

124

Universics: an Axiomatic Theory of . . . Part 1

thus, get to a “theory of assertions”. Similarly, one can admit that the
assertions are missing from the theory and get to a “theory of notions”.
Logicians do not use such theories, but nothing in the definition above
prevent them from being “theories”. Any of the one-sorted structures
mentioned above is referenced here as a “universe of ideas”.

Thus, the notion “universe of ideas” is defined as a triple consisting
of a collection U, a subcollection B of U called basis, as well as a binary
relation on U called reduction; U will be called here support of the
universe. In this paper, the meaning of the symbol turnstile “⊢” used
for deduction will be extended to refer also to notions and this symbol
will be used for reduction of any ideas – assertions or notions. Thus, a
“universe of ideas” is treated here as a simple mathematical structure
denoted as a triple (U, B, “⊢”).

Reduction is to be treated as a “generalization” of many relations
on different types of objects. In previous sentence, the word “general-
ization” is used within quotation marks to emphasize that various other
kinds of relations actually are not really “partial cases” of reduction –
they are “reducible to reduction” (where the term “reducible” is to be
considered metalinguistically, and the term “reduction” as pertaining
to the language). This means that reduction is a fundamental binary
relation and even “generalization”, whatever is this, must be treated
in terms of reduction.

The objects about which are the ideas in a “universe of ideas”
are in a relationship of “reflection” with ideas, and here the supposi-
tion is made that this relation “projects” the same structure upon the
objects, like in a homomorphic map (but reflection is a too complex
phenomenon to be explicated as a homomorphic map). Therefore, a
“universe of objects” will be considered here to have the same type of
structure as a “universe of ideas”.

A usable terminology and convenient notations are needed, and the
development of these follows next. The symbol “⊣”symmetric to the
symbol “⊢” will be also used, and the two expressions “x ⊢ y” and “y
⊣ x” will be referenced as two presentations of the same relation. Both
expressions in the previous sentences a read the same: “x is reducible
to y”. Since, the order of arguments in this reading in a natural lan-

125

I. Drugus

guage is the same as in the expression “x ⊣ y”, it is natural to consider
the expression “x ⊣ y” as the direct presentation of reduction, and the
expression “x ⊢ y” as inverse presentation of reduction. In the def-
initions and proofs in this paper the direct presentation is preferred.
There is no reason to consider one of these “presentations” as repre-
senting the “direct reduction relation” and the other – the “inverse
reduction relation”; both will be considered as representing the same
relation. Notice that also in logic, the “inverse relation” to deduction
(treated as a relation) is rarely referenced, and it has no name. Still, an
intuitive term can help in practice, and here the term “generate” and
its derivatives is proposed for the relation inverse to reduction. Thus,
the relation “x ⊢ y” can be read “x generates y”.

A remark is in place regarding the treatment of reduction as a binary
relation. Notice, that in case of deduction, in a correlation like “x ⊢

y”, x is a list of assertions and y is one assertion – entities of two sorts.
This forces considering both the lists of assertions and the assertions as
entities of one sort – “idea”. Similarly, a notion is generally reducible
to a set of other notions and a “set of notions” is of a sort different
from “one notion”. This forces considering reduction of notions also as
a relation between entities of the same sort – “ideas”.

The reason why reduction is treated as a relation between two ideas,
and not between one thing of a sort and many things of the same
sort, is that the reduction relation implicitly presupposes the existence
of a multitude of ideas to which one idea is reducible. It is exactly
this implicit presupposition which made possible development of an
alternative set theory to be presented in Part 2 of the this paper.

Similarly to ideas, one object is generally considered as reducible
to many objects – say, a list of objects. The lists are structures –
whether they contain objects or ideas. Also there are other types of
structures about which one can say that they contain many objects.
Therefore, the “universe of structures” is a type of universes in terms
of which it is convenient to discuss about the properties of universes.
Also, mathematics is about “mathematical structures”, informatics is
about “data structures” and the universes are defined as mathematical
structures. This is favor of discussing about the universes in terms of

126

Universics: an Axiomatic Theory of . . . Part 1

structures, while keeping in mind that the notions “universe of objects”
and “universe of ideas” serve for ordering the discourse in a manner to
take into account, when possible, which of these two kinds of structures
intended to be a reflection of the other.

4 Universes of structures

For two structures x and y, the expression “x ⊣ y” is conveniently
read as “x is a reduct of y”. The term “reduct” used here comes from
universal algebra, where an algebra A is said to be a reduct of an
algebra B, if the signature of A is contained in the signature of B – a
fact which can be imagined as “reducing” the B to A by “neglecting” or
“ignoring” some of its operations. An intuitive synonym for “reduct” is
“rudiment” or “rudimentary structure”. In some cases, the expression
“x ⊣ y” is conveniently read as “x is more elementary than y”, and one
of such cases is when x and y are sets – here, the relation of membership
is a variety of reduction, and in set theory the correlation “x ∈ y” is
a case of reduction, which is read “x is an element of y” (which is a
partial case of “x is more elementary than y”) .

The collections can be treated as “final reducts” of the mathemat-
ical structures, since these are defined as having a collection as their
support. Next, an explanation follows why the term “universe” is cus-
tomarily used both for a collection and a structure which has this col-
lection as its support. When the set theorists consider a universe of
sets as an “internal model” of a set theory, no doubt they also take
into account the membership relation which governs the sets in that
universe – they treat such a “universe” as a structure. But they refer
to such a structure as “class” making use of a linguistic device called
“metonymy” – naming a whole by the name of a part. Thus, the refer-
ence to a structure by its support can be treated as a result of applying
a “conceptual metonymy” device. In this particular case, the part of
the structure used for reference is the “final reduct” of a structure, and
this is an additional factor imposing to use the conceptual metonymy.

By applying the conceptual metonymy device, also other reducts
of a universe are called universes. One of such reducts is of the kind

127

I. Drugus

(U, “⊣”) obtainable by ignoring the basis. Such a universe will be
said to be “baseless”. The most representative example of a baseless
universe used here is the universe (V, “∈”) of discourse of the ZF,
where “V” is the standard notation of the class of all pure sets (i.e.
sets built out of the empty set, without using atoms). One cannot just
“identify” (consider “the same”) the pair (U, “⊣”) and the triple (U,
∅, “⊣”) by considering the same two different meanings – “without any
base” (i.e. “baseless”) and “with an empty base”. Instead, one can use
the conceptual metonymy device and call “universe”, or more precisely
“baseless universe”, the pair (U, “⊣”) .

Generally, a pair (U, R), where U is a collection and R is a relation
on U is said to be a “frame” – a term borrowed from non-classical logics,
where this term is also used in a longer form – “Kripke frame”. Thus,
the frames will be treated here also as universes, baseless universes.
Any relation is the relation within a frame, and therefore, in this paper,
the symbols “⊣” or “⊢” be used for any relation.

There is yet another kind of reduct of a universe – a reduct obtained
by discarding the reduction relation to obtain the ordered pair P = (U,
B). Such a universe can be treated as a “problem” which is represented
as U – the collection of “possible” solutions, and B – the set of “actual”
solutions to the problem P. This type of “universes-problems” was pro-
posed by Kolmogorov as an alternative interpretation of intuitionism.
Finally, the reduct obtained by discarding both the reduction and the
basis is a collection – thus, by using the conceptual metonymy device,
the collections will be also referenced as “universes”.

A proper definition of universes as structures – a definition account-
ing for the reducts of universes – cannot be done in the language of set
theory other than by re-defining the notion of relation in a complicated
manner. But such a “re-definition” can create risks of ontological and
terminological inconsistency. There is, though, an approach, which of-
fers a convenient device for the presentation of universes as structures –
the approach presented in [5] which uses the notion “quasiary relation”.
Roughly, a quasiary relation is a relation with optional correlates. Also,
there is a mereological set theory [6] with the “empty set” treated as
“nothing”, where the pair (U, “⊣”) and the triple (U, ∅, “⊣”) can be

128

Universics: an Axiomatic Theory of . . . Part 1

treated as two notations of the same thing. Finally, the universes can
be conveniently represented in “aggregation theory” presented in Part
2. It also sounds plausible, that the notion of “conceptual metonymy”
can be explicated in all these three approaches.

Another important question is whether other types of structures
(which “look differently”) are reducible to the structures of type “uni-
verse”. This aspect was not researched in detail by the author, but
there is a result of Quine (seemingly, one which practically did not
draw any attention of the mathematicians). Namely, Quine showed
that the combinatory logic of Moses Schoenfinkel can be interpreted as
a logic of relations (rather than functions) [7]. This result of Quine can
serve as a basis for the belief, that all possible kinds of structures can
be represented as universes.

5 Definition of universes as structures and re-

lated basic notions

A subcollection X of a frame (U, “⊣”) is called transitive in the frame,
if the following condition holds:

(∀u, v ∈ U) ((u ⊣ v) & v ∈ X → u ∈ X).

The intersection of all transitive subcollections of U comprising the
collection X is called transitive closure of X and is denoted as “[X]”.

A universe was said to be a structure of the type (U, B, “⊣”), or of
the type (U, B, “⊣”), but nothing was mentioned about the properties
of such a structure, which are mandatory for them to be “universes”.

The strict and (complete) definition of the notion “universe” is the
one below.

Definition. A triple (U, B, “⊣”), where U is a collection, “⊣” is a
binary relation on U, and B is a transitive subcollection of the frame (U,
“⊣”), is called a universe with the support U, basis (or, synonymously
foundation) B, frame (U, “⊣”), reduction relation “⊣”, and co-basis

U\B.

Thus, the mandatory property of a structure of the type (U, B,
“⊣”) is the transitivity of the basis B – a property required by the

129

I. Drugus

meaning of the terms “basis” (or “foundation”), which does not allow
that “below” an element in the “basis” (or “foundation”) there can
occur any elements of the co-basis.

The co-universe of a universe (U, B, “⊣”) is defined as the universe
(Uc, Bc, “⊣c”), where Uc = U, Bc = U\B (where “\” denotes the
set-theoretic difference), and “⊣c” graphically coincides with “⊢”. The
universe and its co-universe are said to be “dual” to each other. Notice,
that a universe dual to a universe U is not just a universe with the
symmetric presentation, but also with the co-basis of U as its basis.

In a customary manner (as for example, in category theory), a
“dual notion” with prefix “co-” added to its name is defined for each
notion. The superscript “c” will be used in the denotation of a dual
notion as above in the definition of the notion “co-universe” or, for ex-
ample, in notation [X]c for the co-transitive closure of a subcollection
X. Obviously, the term “co-basis” was used in the definition of “uni-
verse” for the collection U\B specifically because this is a dual notion
to the notion “basis”. The co-basis is a co-transitive subcollection of a
universe.

Obviously, [B]c = [Bc], which in words sounds like this: “the co-
transitive closure of the basis is equal to the transitive closure of the
co-basis”. Therefore, the two conditions [B]c = U and [Bc] = U are
equivalent. In words, the first condition means: “the basis must gen-
erate the universe”. This condition on the structure called “universe”
seems to be mandatory, because mathematicians often treat the notion
“basis” as in the terms “generating basis” or “basis of generators” and
they use modifiers like “finitely-based”. The term “foundation” does
not have this connotation of “generation” and the “foundation” could
have been preferred for the component “B” of a universe. Unfortu-
nately, the term “induction basis” is widely accepted and cannot be
easily replaced with the term “foundation of induction”. Therefore,
the term “basis” will be preserved, but one needs to remember that
this term is not supposed to have the connotation of “generation”.
A more important note is that, in order to allow for a wide class of
universes, where in particular, the notion “foundational completeness”
makes sense, the property of universes to be generated by the basis will

130

Universics: an Axiomatic Theory of . . . Part 1

not be required. The universes generated by their bases will represent
an important class of universes said to be “well-founded”.

The notions as direct product, homomorphich image, etc. are de-
fined in the customary manner and will not be introduced here. The
only notion in addition to those already introduced which is needed
here is that of a “sub-universe” and it will be defined here like this: a
universe U is said to be a sub-universe of the universe V, if the sup-
port, basis, and the reduction relationship of U (treated as a collection
of ordered pairs) are included in the support, basis and reduction rela-
tionship of V, respectively.

In this section, the notion “universe” was presented in terms of
relations – a unary relation, a “property” and a binary relation. In
section 11, an algebraic presentation of this notion will be introduced,
where a universe will be treated as a universal algebra.

6 Universics as a framework of axiomatic the-

ories

The term “set theory” refers to the conception of set and to a large
number of axiomatic set theories, which are correlated with each other,
since all these theories describe different aspects of the same conception.
Thus, set theory is a framework of axiomatic set theories. Also, this
“theory of universes” or “universe theory” (similar to “theory of sets”
but “set theory”), is a framework of axiomatic theories. These theories
use the 1st order predicate language, with a unary predicate symbol
“B” with the meaning of B(x) expressed in words like “x is basic”, or
“x is fundamental” or “x is foundational” (depending on the particular
universe), and the binary predicate symbol “⊣” to be used as infix,
with the predicate symbol “⊢” used “symmetrically”.

Another notation for B can be the symbol of reduction “⊣” used as
a unary predicate symbol in prostfix position as in expression “x ⊣ ”,
and similarly for the symbol “⊢” to be used in a prefix position, and
alternatively, functional notations “⊣(x)” and “⊢(x)” can be used. But
this would only reduce the number of symbols of the language to one,

131

I. Drugus

while impeding to the “readability” of formulas. Instead, this use of
the symbol of reduction for a unary predicate symbol shows that the
property “to be basic” can be intuitively treated as a rudiment of the
relation “to be reducible”. Notice, that instead of the two symbols “B”
and “⊣”, only the symbol “⊣” can be used, if reduction is considered
a symbol of a quasiary relation [5]. Thus, universics can be treated
essentially as a theory of one quasiary relation. The described language
will be called “language of reduction” or “reduction language”. This
language can be extended by adding new symbols, and to oppose it to
any extended language one can use the modifier “pure” like this: “pure
reduction language”.

Since the universics is essentially a theory of large scale universes
which serve as universes of discourse of theories, this theory must ex-
plicate the most fundamental properties like “to be fundamental”, “to
be foundationally complete” or “to be well-founded”. “To explicate”
is also to present the properties or properties like those mentioned in
previous sentence. A better term than “property of properties” is the
term “principle” and the postulates of universics are called “principles”
– “universic principles”. There are two such principles – the “funda-
mentality principle” (1) and the “reduction principle” (2), which are
presented below:

(∀ x, y) ((x ⊣ y) & B(y) → B(x)), (1)

(∀x(B(x) → P(x)) & ∀x(∀y((y ⊣ x) → P(x)) →P(x))) →∀xP(x). (2)

The principle (1) is an axiom, and the principle (2) is an axiom
scheme, where P is a formula and “x” is a variable which may or may
not enter in P, together forming a property. These two principles are
the axioms of a theory denoted here as W – a theory of “well-founded
universes”. The principle (1) mainly explains the meaning of the sym-
bol “B” and could be added to the conjunction in the antecedent of the
principle (2), so that this would describe the properties of B(x) and of
P(x) and provide the condition for the conclusion to hold. Thus, the
theory W can be said to be based on the reduction principle modified
in this manner. But (1) and (2) are independent, and a theory based

132

Universics: an Axiomatic Theory of . . . Part 1

on only (1) offers the facilities to deal with the conception of fundamen-
tality and foundational completeness. Therefore, a theory denoted as
“U” with only the fundamentality principle (1) is worth considering.
The meaning of these two postulates will become clear in the course of
this presentation where the universes of discourse of these two theories
are described to provide the semantics the W theory.

7 On the ontology of universics

Ontology is the science of “being” – philosophically, it is a science about
existence; conceptually, it is about what something “is” – something
can be an atom, a set, a structure; and linguistically, it manifests in
terms (“atom”, “set”, “structure”) which form “thesauri” – linguistic
counterparts of “ontologies”.

As mathematical structures, the universes serve as explications of
phenomena – their representation as abstract structures called “uni-
verses”. Due to the fact that different concrete phenomena can be
explicated as one structure, certain particularities of those phenomena
are ignored, which is presupposed to occur in any process called “ab-
straction”. Other particularities of phenomena are essential and they
are reflected in the terminology used for the explication. Sometimes,
different terms used in discourse about the original phenomena reflect
the same feature in their explication. This can be exemplified by three
universes – universe of structures, universe of notions, universe of theo-
ries. In the universe of structures, the basis is a collection of structures
called “basic”. In the universe of notions, the basis is a collection of
notions called “fundamental”. In the universe of theories, the basis is
a collection of theories called “foundational”. All these three universes
are the same as mathematical structures, but the three notions are
called differently: “basic”, “fundamental”, “foundational”.

Since universics is also a “universal theory”, the varieties of phe-
nomena which can be explicated as the same structure must be huge
and the terminology used for describing them – “variegated”. Thus,
variants of a term must be admitted in a definition, and the same notion
must be recognized in different system of terms (thesaurus). Among

133

I. Drugus

the best tool for orientation in this conceptual and terminologic wealth
is a proper handling of presentations of the universes.

8 Two presentations of a universe

Even though a universe of ideas and a universe of objects are expli-
cated as structures of the same type, the practice of using structures of
this type shows that the convenient presentations of the two universes
differ – these are symmetric diagrammatic representations. So, while
a universe of ideas is conveniently presented as a triple like this (U,
B, “⊢”), a universe of objects is more convenient to be presented as
a triple like this (U, B, “⊣”) with a symmetric symbol for reduction.
There is yet another kind of “inversion” – while the presentation of
reduction relation for ideas is convenient to be considered as “inverse”,
the presentation of reduction for objects is convenient to be considered
as “direct”. There are yet more “inversions” when the objects or the
ideas are more particular, and such “symmetric projections” are due
to the complex laws of reflection relation between ideas and objects.

The choice of a presentation for a universe representing a phe-
nomenon is important for handling the terminology, conceptuality and
the development of the intuitions related with explicated phenomenon
and the next two examples illustrate this.

Example 1. Notice that the objects called “structures” are intu-
itively treated as obtained in result of a “construction” process which
unfolds in “steps”. A set is a particular case of structures – a set is
constructed from its elements by repetitive application of an operation
– one which is called here “aggregation”. In the description of the von
Neumann universe, the “steps” are called “stages”, and a set is ob-
tained at a certain stage of this process. This kind of “construction”
process is treated here as a special kind of reduction, when they con-
sider that “x is a reduct of y”, if x is in the relation [∈] with y, where
[∈] is the transitive closure of the membership relation.

Any process of construction in “steps” or “stages” is intuitively per-
ceived as ruled by the mathematical induction principle, and one can
say that induction is the explication of the construction process. Prob-

134

Universics: an Axiomatic Theory of . . . Part 1

ably, Harvey Friedman was guided by this idea, when he considered
a set as obtained in result of an “inductive construction”. Based on
these intuitions the reduction relation of the universe of structures is
said here to be of “inductive type”.

Example 2. In a universe of ideas, an idea x cannot be said to
be “constructed” from another idea y, since each idea “reflects” other
objects, and the ideas are created in mind to comply with the laws of
“reflection” of reality – not in compliance with the relations between
the reflected objects . A universe of ideas is many-sorted, and the
term for reduction is sort-specific. As earlier discussed, there are two
main sorts of ideas which are mostly treated by logicians – assertions
and notions. For two assertions x and y, one says that x is deducible

to y, and denotes this as “x ⊢ y”. The deduction relation is another
case of reduction. The axiom “x ⊢ x” is postulated, practically, for all
deduction calculi. But if this axiom is not postulated, a generalization
of deduction is obtained, and the features of this generalized deduction
can be described by a principle dual to induction principle – one which
is appropriate to be called “deduction principle”. The deduction calculi
define various universes, and all of them are said to be of “deduction
type”.

For each notion in the presentation of one type, there is a dual
notion in the other presentation of the other type which will be called
here “dual image” of the notion. This invites for the search of dual
images in the universes with dual presentations.

9 Atoms as irreducible objects of a universe

For a set theory to have atoms, its language must have a predicate
symbol, usually denoted as Atom(x) in addition to the membership
symbol. This predicate has the meaning “x is an atom”, and those
objects for which this predicate is true are “called atoms”. The atoms
make up a set (not a class). The universe of discourse of a set theory
with atoms (U, B, “∈”), where B is the set of atoms, is a “full-fledged”
universe – it is not a reduct, like the universe of ZF. Here, by “atoms”
the “regular atoms” are referenced – objects, which do not have ele-

135

I. Drugus

ments, and which are different from the empty set – an object called
also “urelements”. The urelements are objects of a sort different from
the sort “set”.

A “Quine atom” is an object q which equals to its singleton {q},
or in other words, a Quine atom is a set (!) in which membership
relation is reflexive. Thus, a Quine atom is not a proper “atom” – it is
a singleton, a special kind of set. Hence, a set theory whose all atoms
are Quine atoms is a “pure set theory”. If q is a Quine atom in a set
theory, then there exists an infinite chain in the universe of discourse of
this theory: q∈ q∈ A Quine atom is a non-well-founded object,
and the transfinite induction principle cannot be proved in a set theory
with Quine atoms.

By analogy with set theory, two formulas are introduced here for

universes: Urelement(x)
def
= ¬∃y(y ⊣ x) and QuineAtom(x)

def
= ∀x((y ⊣

x) ↔ y = x). Notice, that these two formulas express different kinds of
irreducibility. An object of a universe with the property Urelement(x) is
called “urelement”, and an object of a universe satisfying the condition
QuineAtom(x) is called “Quine atom”. The property to be an “atom”,
i.e. either an “urelements” or a “Quine atoms” is defined like this:

Atom(x)
def
= ∀y((y ⊣ x) → y = x).

If the basis of a universe consists only of atoms, the elements of the
basis are pairwise incomparable, i.e. the basis satisfies the following
condition: (∀x, y ∈ B)((x ⊣ y) & (y ⊣ x) → x = y).

Call a universe “atom-based” if all objects in its basis are atoms,
and call the basis of such a universe – “orthogonal basis” of the universe.

10 What is foundational completeness?

Despite its extremely “weak” character of a theory which imposes only
one condition on universes – to satisfy the “principle of fundamental-
ity”, the theory U can be used to explain many notions, like “funda-
mental idea” or “foundational completeness of a theory”. Obviously,
the most appropriate universe for treatment of the first notion is the
“universe of ideas” and a convenient presentation for this universe is

136

Universics: an Axiomatic Theory of . . . Part 1

the deductive type presentation. Thus, the convenient symbol for re-
duction of ideas is the symbol “⊢”. The expression “x ⊢ y” will be read
here as “x is more fundamental than y”, and the formula “ B(x)” as
“x is fundamental”.

U has only one axiom called “fundamentality principle”, which in
this deductive type presentation looks like this:

(∀x, y) ((x ⊢ y) & B(y) → B(x))

The intuitive meaning of this axiom is expressed in this reading of
the fundamentality principle: “if an idea is fundamental, then a more
fundamental idea than it is also fundamental”.

This principle makes little sense for axiomatic theories, but it makes
a lot of sense for theories which are not axiomatic. So, the intuitive set
theory is not an axiomatic theory – it is a universe of statements among
which some statements are considered as mandatory for describing the
conception “set” and are declared to be fundamental. If a statement B
is considered fundamental, and later another statement A was found,
such that A ⊢ B, then the fundamentality principle prescribes to con-
sider “fundamental” also the statement A.

An axiomatic theory T has a basis, where its axioms are contained,
which is a sub-universe of the universe of intuive theory axiomatized by
T. An idea can be fundamental in the universe of the intuitive theory,
but not “posited in the basis of T”, i.e not declared as an axiom. If it
is posited in the basis of the theory T, then it becomes an axiom of the
theory T.

The notion “axiom” of a theory is similar to the notion “atom” in
the dual universe or, in other terms – it is a “dual image” of the notion
“atom”. There is no short term to a theory with independent axioms
and such a theory will be said here to be “orthogonally-based” similar
to the dual notion used for the universe of set theory. It makes sense
to consider only such theories for definition of the notion “foundational
completeness” below.

Definition. Suppose (T, A, “⊢”) is an orthogonally-based theory
with A as its set of axioms, and T is a sub-universe of a universe (U,

137

I. Drugus

B, “⊢”). Then the theory T is said to be foundationally complete for
the universe U, if [A] = B.

For U, a well-founded universe, the equality [A] = U is true, but
using this condition in the definition would limit it to only well-founded
universes. As it was formulated, the definition provides the most large
application of this notion, including, to the non-well-founded universes.

11 A general method for algebraization

In this section, three general methods for representing a relation via an
operation are introduced which can serve for algebraization of univer-
sics. Actually, due to [7], these methods can be used for algebraization
of any theories, including those with symbols for n-ary relations, where
n > 2.

Recall that a collection equipped with a binary operation “◦” is
called “magma” or “grouppoid”. But the term “grouppoid” is also used
with another meaning in category theory, and here the term “magma”
is preferred. For a magma M = (S, “◦”), the collection S is called
“support of the magma” and is often denoted as M, while “◦” is the
symbol of an operation, called “(fundamental) operation of magma”.
The methods of algebraization presented in this section are for alge-
braization of a frame, a magma is associated with any frame, such that
the frame can be restored from the magma. Since any frame can be
considered as a baseless universe, the fundamental relation of a frame
will be denoted here as “⊣”.

Method 1. This method of algebraization presupposes that, with
any magma M = (M, “◦”) the frame F = (M, “⊣◦”) is associated,
where the relation “⊣◦” is defined in this manner:

x ⊣◦ y iff x ◦ y = y.
A mathematical structure, in particular, a magma or a frame, is

called trivial if it has only one element. It is easy to prove the following
proposition.

Proposition. Any non-trivial frame associates with a non-trivial
magma.

Proof. Suppose F = (F, “⊣”) is a frame, and define the operation

138

Universics: an Axiomatic Theory of . . . Part 1

“◦⊣” in the manner showed below, where x and y are arbitrary elements
of the frame:

(1) if x ⊣ y and x 6= y, then set x ◦⊣ y = y;

(2) if x ⊣ y does not hold and x 6= y, then x ◦⊣ y = x;

(3) if x ⊣ y holds and x = y, then x ◦⊣ y = z, where z is any element
different from x (such an element always exists, given that the
frame is non-trivial, i.e. it has at least two elements).

It is easy to check that the relation “⊣” coincides with the relation
“⊣◦”, and if this relation is anti-reflexive, i.e., if ¬(∃x ∈ S)(x ⊣ x), then
the operation, with which the frame F is associated is defined only by
the conditions (1) and (2).

This Method 1 will be used in Part 2 for development of an algebraic
set theory based on the ideas of universics.

Method 2. Any binary relation “⊣” can be treated as obtainable
from an operation “◦” in this manner: x ⊣ y iff ∃u(x ◦ u = y). This
method can be used for algebraization of a theory of sequences as this
will be shown in Part 2.

Method 3. This method of algebraization of theories is based on
the idea to use the “graph algebras” [8]. Basically, a “directed graph”
(or “oriented graph” in terminology of other authors) is a frame F and
its “graph algebra” is defined as a magma (F

⋃

{0}, “◦”), where “0”
denotes an entity which is not a member of F, while the operation
denoted as “◦” is such that x ◦ y = y, if x ⊣ y, and x ◦ y = 0 , in
all other cases. There is no agreement regarding (a) the denotation
“0” – sometimes one uses the denotation “∞” instead, (b) whether the
operation “◦” is to be defined like above, or it is appropriate to define
it so that x ◦ y = x, if x ⊣ y, (c) to consider or not the symbol “0”
a symbol of a 0-ary operation. This lack of an agreement is beneficial
for algebraization purposes using graph algebras, since the appropriate
variant can be chosen based on the concrete theory which “undergoes”
algebraization. No attempt was made by the author to algebraize uni-
versics by means of graph algebras, even though this approach sounds

139

I. Drugus

to be very useful for development of an algebraic set theory based on
the ideas of universics, if the element denoted as “0” is treated as the
empty set.

A consistent practice to denote the binary operations associated
with binary relations is adopted here. The operation associated with
the relation denoted as “⊣” is denoted as “·:” and the operation asso-
ciated with the relation “⊢” is denoted as “:·”. A mnemonics for the
operations similar to the mnemonics for the relations is adopted – “one
dot” is directed towards the entity treated as “one” and “two dots”
(the colon) is directed towards the entity treated as “many”.

In conclusion of this section, a discussion is in place about the com-
parative power between a theory and its algebraic counterpart, which
relates also to methodology of presentation of theories. A binary oper-
ation “◦” on a collection C can be represented as a collection of triples
(x, y, x ◦ y) and, thus, it can be treated as a partial case of a ternary
relation, and a ternary operation can be said to “carry more informa-
tion” than a binary relation treated as a collection of ordered pairs.
This additional information encrypted in binary operations allows for
more expressivity. So, while the notion of function needs to be defined
in a set theory based on the membership relation, in algebraic set the-
ory, a function can be defined via the fundamental operation which
represents the membership. Also, the generalized induction principle
in the algebraic set theory permits to naturally define the (transfinite)
recursive functions.

References

[1] J. Vaananen. Multiverse set theories and absolutely undecidable

propositions. In: Interpreting Goedel, Critical Essays. ed. J.
Kennedy (2014) pp. 180–205.

[2] J. D. Hamkins. The set-theoretic multiverse: A natural context

for set theory. Annals of the Japan Association for Philosophy of
Science (2011) vol. 19. pp. 37–55.

140

Universics: an Axiomatic Theory of . . . Part 1

[3] I. Drugus. Universics: a Common Formalization Framework for

Brain Informatics and Semantic Web. In: Web Intelligence and
Intelligent Agents. InTech Publishers, Vucovar (2010), pp. 55–78.

[4] I. Drugus. Universics: an Approach to Knowledge based on Set

theory. In: Knowledge Engineering Principles and Techniques. Se-
lected Extended Papers. Cluj-Napoca, Romania (2009), pp. 193–
200.

[5] M. S. Nikitchenko, S. S. Shkilniak. Algebras of quasiary relations.
Theoretical and Applied Aspects of Program Systems Develop-
ment (TAAPSD’2014): 11th international conference: proceeding.
K., 2014. pp. 174–181.

[6] D. Lewis. Parts of classes. Basil Blackwell. 1991. p. 4.

[7] W. V. Quine. A reinterpretation of Schönfinkel’s logical operators.

Bull. Amer. Math. Soc. Volume 42, Number 2 (1936), pp. 87–89.

[8] G. F. McNulty, C. R. Shallon. Inherently nonfinitely based finite

algebras, Universal algebra and lattice theory (Puebla, 1982). Lec-
ture Notes in Math. 1004, Berlin, New York: Springer-Verlag,
1983. pp. 206–231.

Ioachim Drugus Received August 2, 2015

Institute of Mathematics and Computer Science

Academy of Sciences of Moldova

5 Academiei str., Chisinau, MD-2028, Moldova

E–mail: ioachim.drugus@math.md

141

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Universics: an Axiomatic Theory of Universes

for the Foundations

Part 2. Well-Founded Universes and An

Algebraic Set Theory Based on Universics

Ioachim Drugus

Abstract

This is the Part 2 of the paper about an axiomatic theory
of universes called “universics”. Two main results are presented
here: (1) a generalization of the notion “well-founded set” to the
notion “well-founded universe” and the proof of a theorem saying
that the theory W introduced in Part 1 axiomatizes the class of
well-founded universes, and (2) an algebraic set theory based on
the ideas of universics, into which set theory can be immersed.
This is contended to achieve the Harvey Friedman desideratum to
find an alternative theory pivoted around induction, into which
set theory or a large part of it could be immersed.

Keywords: well-founded universe, Noetherian universe,
multi-identity object, aggregation.

1 What is a well-founded universe?

The property to be well-founded was initially defined for sets [1], but
it can be extended to arbitrary collections in this manner: a collection
U is called well-founded, if for any non-empty sub-collection V of U,
there is a “minimal” element m such that for any v ∈ V, it is false
that v is in relation [∈] with m (here [∈] is the transitive closure of
the membership relation). Frequently, the property to be well-founded
is defined for binary relations, which is a generalization of this notion,

c©2015 by I. Drugus

142

Universics: an Axiomatic Theory of . . . Part 1

but for this presentation, the initial meaning of the term “well-founded”
is important. The support of a universe can be well-founded, but to
define a universe as “well-founded” only because of it having a well-
founded support, would mean to ignore the fact that a universe also
has a basis. A better definition would be one, which takes into account
also the basis, but allows for a well-founded universe to contain non-
well-founded objects.

In a set theory with the axiom of choice, it can be proven that a set
s is well-founded, iff there does not exist an infinite chain s0, s1, s2,. . . ,
where s = s0, and for any n = 0, 1,. . . , sn+1 ∈ sn – a condition called
“decreasing chain condition” in ring theory, and which is satisfied by
the Noetherian rings. Thus, in a set theory with the axiom of choice,
well-founded-ness of sets is equivalent to the decreasing chain condition
– a condition which can be used in definition of well-founded-ness of a
universe. In this paper, a universe will be considered to be well-founded
if any infinitely decreasing chain is contained in its basis starting from
a certain point. This definition does not exclude any non-well-founded
sets in a universe of sets and allows for a very large class of universes.

2 The meaning of the reduction principle in

universics

The meaning of the reduction principle can be better understood if
it is explained in terms of the mathematical induction principle in
arithmetic where induction has a basis (usually “1”), and in terms
of epsilon-induction principle in set theory, whose universe of discourse
is a baseless universe, and where induction does not have a basis as
this was noticed in the early days of set theory [2]. In set theory, the
“epsilon-induction principle” is the following scheme of statements in
the language of set theory:

∀x(∀y(y ∈ x → P(y)) → P(x)) → ∀xP(x).

Here, “P(x)” is an arbitrary “property of x”, with “P” a formula and
“x” – a variable which is not required to necessarily occur in formula
P. This principle is equivalent to the regularity axiom, given also the

143

I. Drugus

other ZF axioms.
A generalization of epsilon-induction is, obviously, obtained by us-

ing an arbitrary binary relation R on a class X instead of the member-
ship relation. Such a generalized induction holds for any “well-founded”
relation R – i.e. a relation R, where any non-empty subset S of class
X has a “minimal” element, i.e. an element s, such that (x R s) does
not hold for any x ∈ X.

The epsilon-induction does not hold in a set theory with Quine
atoms. More generally, it does not hold in any set theory with non-
well-founded sets. Naturally, the idea comes to mind to “hide” all
such sets in a basis of induction, and reformulate the epsilon-induction
to a principle which holds in any set theory, including in set theories
with non-well-founded sets. Based on this idea, the epsilon-induction
principle can be generalized and presented like this:

(∀x(B(x) → P(x)) & ∀x(∀y((y ∈ x) → P(y)) →P(x))) →∀xP(x). (1)

This epsilon-induction principle is a principle of induction presented
in the most “general form” and if the symbol “∈” is replaced with the
symbol “⊣”, the “reduction principle” of universics is obtained in its
direct presentation, which can be called (just) “induction principle”.
If the symbol “⊢” is used, then the following form of the reduction
principle, which can be called “deduction principle”, is obtained:

(∀x(B(x) → P(x)) & ∀x(∀y((y ⊢ x) →P(y)) → P(x))) →∀xP(x). (2)

If the property P(x) is a property of assertions and the expression
“P(x)” has the meaning “x is true”, then the deduction principle states
that, if the axioms of a theory are true, and if the truthfulness of an
assertion follows from the truthfulness of all assertions from which it
can be deduced, then all the assertions of the theory are true. All de-
duction calculi are built in such a manner that this principle is satisfied
and this principle can be treated as a “metamathical law” of deduction.

The reduction principle of universics does not assign any of the two
meanings discussed above, that of induction or that deduction, and

144

Universics: an Axiomatic Theory of . . . Part 1

it could be interpreted in many other manners different from those
above. For the practice of using the reduction principle, several terms
are useful and these will be introduced next. The formula (∀x(B(x)
→ P(x)) is called “basis condition” and the formula ∀x(∀y((y ⊣ x)
→ P(x)) → P(x))) is called “reduction condition”. A property P(x)
satisfying the reduction condition is called “reductive property”. A
property P(x) is called “universal” if the formula ∀xP(x) is true. Thus,
the reduction principle can be read in this manner: “if the elements of
the basis of a universe have a reductive property, then this property is
universal”.

3 Well-founded universes

Denote the set of natural numbers as “N” and call a sequence un, n
∈ N, of elements of U decreasing (increasing) chain in universe U, if
for any n, the condition un ⊣ un+1 (respectively, un ⊢ un+1) holds, and
say that such a chain starts in u1. Even though the modifier “infinite”
will not be used, such a chain will be considered infinite due to the
infinite set of indexes (N). Thus, the chain u ⊢ u ⊢ . . . , for some u is
considered as infinite. Such a chain occurs in any universe U, in which
there exists an element u, such that u ⊢ u. Notice, that a finite sequence
u1 ⊢. . . ⊢ uk cannot be said to be “everywhere” decreasing, because
one cannot say that it also “decreases in uk”, once there is no uk+1 such
that uk ⊢ uk+1. Due to this intuition, the modifiers “decreasing” and
“increasing” are treated here as implying also the modifier “infinite”
and the expression “infinite decreasing (increasing) chain” will not be
used.

Call well-founded (co-well-founded) universe a universe U, such that
for any decreasing (increasing) chain un, n∈ N, there exists a k ∈ N,
such that uk ∈ B. A baseless well-founded (co-well-founded) universe is
called “Noetherian” (“Artinian”). An example of a Noetherian universe
is the universe of ZF, and an example of an Artinian universe is the
universe of all hereditarily finite sets. A set s is hereditary finite if both
s and any element of the transitive closure [s] is finite (an example of
a non hereditary finite set is the set {ω}, where “ω” is the first infinite

145

I. Drugus

ordinal).

This treatment of well-founded-ness in terms of decreasing (increas-
ing) chain condition is similar to the approaches used by Emmy Noether
and Emil Artin in ring theory, except that in universics this condition
is modified to take into account also the basis of the universe. One may
wonder whether the term “well-founded” (in particular, “Noetherian”)
and “co-well-founded” (in particular, “Artinian”), which are defined
in terms of decreasing, respectively – increasing, chain conditions, are
properly defined with respect to presentation – “direct” versus “indi-
rect”.

Actually, the choice of the terms “well-founded” (or “Noetherian”)
and “co-well-founded” (or “Artinian”) is appropriate, as it follows from
next simple proposition:

Proposition. For a decreasing (increasing) chain un, n ∈ N, of a
universe U, the sequence [un], n ∈ N, where for any n ∈ N, [un]

c is a
transitive (co-transitive) closure of un, is increasing (decreasing).

Now, to make sure that the presentation was chosen properly, notice
that if a chain of elements of a universe is “increasing” the correspond-
ing chain of ideals is “decreasing”, and viceversa. Also notice that in
ring theory, the notion Noetherian (Artin) ring is defined in terms of
decreasing (increasing) chain of ideals of the ring and not of elements
of the universe like in case of universes.

For any decreasing (or increasing) chain un, n ∈ N, call tail-chain
(or simply tail) of it any decreasing (respectively, increasing) chain
vn, n ∈ N such that there exists some k ∈ N, so that for any n ∈ N,
vn = un+k. Since the base B of U is a transitive collection, for each
decreasing chain there is a tail of it which is entirely in B.

The statement below is a lemma for the Theorem which follows it.

Lemma. Any non-empty sub-collection V of the co-basis of a well-
founded universe is well-founded.

Proof. Notice that the meaning of the term “well-founded” is dif-
ferent for the sub-collection and for the universe – a well-founded col-
lection is a collection such that any sub-collection of it has a minimal
element as this was explained in section 1. Suppose, there are no min-
imal elements in V and, since V is a non-empty collection, choose an

146

Universics: an Axiomatic Theory of . . . Part 1

arbitrary u1 ∈ V. Since u1 is not minimal, there exists a u2 ∈ V, such
that u1 ⊢ u2, and so on. Reasoning this manner, one can build a de-
creasing chain u1 ⊢ u2 ⊢. . . of elements of V, and since V ⊆ U\B,
there is no tail-chain of this chain in B. This contradiction with the
fact that U is a well-founded universe shows that the supposition that
V is well-founded is false, and thus, that the proposition is true. QED.

Recall that W is the theory with both the principle of fundamen-
tality and the principle of reduction.

Theorem. A universe U is a model of W iff U is well-founded.

Proof. Let U be a well-founded universe and prove that U is a
model of W. Suppose, that P(x) is an arbitrary property, and prove
the reduction principle for P(x). Suppose, the condition of reduction
principle is true, i.e. the assertion (*) holds.

∀x(B(x) → P(x)) & ∀x(∀u(u ⊣ x → P(u)) → P(x)) (*)

Denote by V the sub-collection of all x in U which do not have the
property P(x) , and suppose that V is non-empty, and that there exists
a u ∈ V . Since ∀x(B(x) → P(x)) but P(u) does not hold, according to
the definition of V, one gets that B(u) also does not hold. Therefore,
u ∈ U \ B. Thus, it was shown that V ⊆ U\B. Due to the Lemma,
there is at least one minimal element in V and denote as m one of such
minimal elements. Since m is minimal, ∀u(u ⊣ m → u /∈ V) is true
and, since u /∈ V means exactly that P(u) holds, one gets that ∀u(u
⊣ m → P(u)) holds. Due to (*), ∀u(u ⊣ m → P(u)) → P(m). Thus,
P(m) holds, and this contradicts to the supposition that u ∈ V. This
concludes the proof that any well-founded universe is a model of theory
W.

Now, to prove the contraposition, suppose that a universe U is not
well-founded, and that there exists a decreasing chain u1 ⊢ u2 ⊢. . .
in U, such that no tail of it lies in B (notice that now the inverse
presentation symbol “⊢” is used). Since B is a transitive collection, for
all n ∈ N, un ∈ U\B, i.e. this chain lies in the co-basis. Denote as
“P(x)” the property “(∀n ∈ N)(x 6= un)” and show that the reduction
principle for P(x) is a false statement. Namely, show that the following
three statements are true: (a) ∀x(B(x) → P(x)), (b) ∀x(∀u(u ⊣ x →

P(u)) → P(x)), (c) ∃x¬P(x). To show (a), suppose u is an arbitrary

147

I. Drugus

element of B and notice that the chain u1 ⊢ u2 ⊢. . . is fully in the
co-basis U\B; thus, P(u) holds. To show (b), for an arbitrary v, prove
the contraposition ¬P(v) → ¬∀u(u ⊣ v → P(u)). But ¬P(v) means
that v = un, for some n ∈ N, and ¬∀u(u ⊣ v → P(u)) means that there
exists an m ∈ N, such that um ⊣ un and that ¬P(um). Such an m ∈

N really exists – namely, this is n+1. To show (c), notice that ¬P(un)
holds for any n ∈ N. QED.

4 Successors and limits

The transfinite induction condition has two “sub-conditions”, called
“successor case condition” and “limit case condition”, which are im-
portant in proofs by induction and definitions by induction. Unlike
transfinite induction, the reduction principle has only the reduction
condition ∀x(∀y((y ⊣ x) → P(x)) → P(x))). Our next task is to repre-
sent the reduction principle in the same form as the transfinite induc-
tion, by generalizing the notions “successor” and “limit” from ordinals
to arbitrary objects of a universe.

For a universe U, and u, v ∈ U, call v “successor” of u (or u “pre-
decessor” of v), and denote this as “x · ⊣ y”, if there does not exist a w
∈ U, such that u ⊣ w and w ⊣ v. Call an element v of U a successor el-

ement (or predecessor element) of U and denote this as “successor(v)”,
if there exists an element u of U, such that v is successor of u. Call x a
limit element in U and denote this as “limit(x)”, if x is not a successor
element in U. Dually, one can define what is a “predecessor in U” and
a “lower limit in U”, but we will employ here only the “successor” and
“limit” terms, where the term “limit” is supposed to be “upper limit”.
Notice that a successor (predecessor) in U can have many predecessors
(successors), but this is not important for our purposes. These terms
are needed to enable presenting the reduction principle in another form
by replacing the “induction step condition” in the transfinite induction
principle with the conjunction of following formulas:

S
def
= ∀x(successor(x) → ∀u((u · ⊣ x) & P(u) → P(x))),

L
def
= ∀x(limit(x) → ((∀u(u · ⊣ x) → P(u)) → P(x))).

148

Universics: an Axiomatic Theory of . . . Part 1

Say the new form of reduction principle to be in form “form 2”.
Thus, the reduction principle in form 2 looks like this:

(∀x(B(x) → P(x)) & S & L → ∀xP(x).

Proposition. The induction principle in main form and the induc-
tion principle in form 2 are equivalent.

To prove this proposition, it is enough to prove that the formula
∀x(∀u((u ⊣ x) → P(u)) → P(x)) is equivalent to S & L.

5 An algebraic set theory based on the ideas

of universics

A finite set A = {a1,. . . , an} can be treated as built in a process which
starts from the empty set and continues by applying an operation of
“bringing” the objects a1,. . . , an one by one into the set until the set
is ready. Only when an object is “brought into” A, it can be said to be
an “element” of A – untill an object is brought into A, it remains what
it was – an “object”, which for the universe of a set theory is either an
atom or a set. The operation of “bringing in” an object x into a set y
is said in this paper to be “adduction” (which in Latin means exactly
“bring in”) and is denoted as “:”, or, if one wants to have a symbol
for the inverse operation, then the symbol “·:” with its symmetric “:·”
symbol can be used (as it was recommended in Part 1 in the context of
algebraization of universics). The symbol “:” comes from the notation
of a class as {x : P(x)} (where it has a slightly different meaning, since
in it “x” is a set, but “P(x)” is a property), and “:” as a symbol of
operation plays same fundamental role in our algebraic set theory as
the symbol “∈” of a relation plays in set theory.

Thus, the adduction of x into y is denoted as “x : y” and it can
be treated as the set {x} ∪ y. Notice, that the following equivalence
holds:

x : y = y iff x ∈ y.

This equivalence can be used for the algebraization of set theory
(see “Method 1” in Part 1.)

There are two synonyms, “adjunction” of “adduction”, used in lit-

149

I. Drugus

erature, and “adjunction” is more frequently used than “adduction”.
But there are many reasons why the term “adduction” should be pre-
ferred in universics: (a) this word is from the same family as the term
“reduction” (“induction” and “deduction”), (b) This Latin word has
the intended meaning “to bring in” in Latin, (c) the word “adjunction”
sounds close to “adjointness” and the search engines wrongly deliver
links related with category theory when the search is made by the key
word “adjunction”.

The idea about adduction goes back to Zermelo who encountered it
in connection with a form of induction principle applied in the universe
of set theory [2], and in definition of natural numbers by the induction
using the “diagonal form” operation {x} ∪ x. But Alfred Tarski seems
to have been the first to have paid really close attention to this opera-
tion [3] and to have used a special form of induction principle based on
this operation, which served for axiomatizing the theory of finite sets.
In [4], this operation was used to develop a theory of inheritably finite
sets and a theory of recursive functions over them.

The theory of sets developed here is actually an algebraic theory of
baseless universes regarded as “magmas” – collections, equipped with
a binary operation denoted here as “:” – algebraic counterparts of uni-
verses, which are universal algebras and which can be called “algebraic
universes”. The objects populating such an algebraic universe should
be treated as “set-like” objects, but of a kind different from “collec-
tions” (i.e. sets and classes), in particular, due to having repeating
elements. These objects are called here “aggregations” and their the-
ory is called “theory of aggregations” or “aggregation theory” (similar
to “theory of sets” but “set theory”) and is denoted as A.

An algebraic universe is a structure of the type (U, “:”), which
corresponds to the structure (U, “∈”) in the sense that “∈” is defined

through “:” like this: (x ∈ y)
def
= (x : y = y). The theoryA is considered

as an extension of the theory W, where the reduction symbol “⊣” needs
to be replaced by the symbol “∈”. Notice, that reduction principle, as
well as any other formulas using the symbol “∈”, can be represented
in the language of the theory A, because the symbol “∈” of relation is
definable in A through the symbol of operation “:”.

150

Universics: an Axiomatic Theory of . . . Part 1

In addition to reduction principle which provides for well-founded
universes, the theory A has a number of algebraic axioms (the names
of axioms are indicated in parentheses):

(x : x) : z = x : z, (left idempotency)
(x : y) : z = (y : x) : z, (left commutativity)

x : (y : z) = y : z iff x = y ∨ x ∈ z. (adduction axiom)

6 The intuition behind aggregations

Notice that if the set {s1, s2,... , sn} is denoted as S, which is usually
represented as S = {s1, s2,... , sn}, then this fact can be represented
as s1: (s2 : ... (sn : S)) = S. Also, due to left idempotency and left
commutativity axioms, if the right associativity rule for denotation of
expressions using “:” is adopted, then the parentheses can be dropped
and the colon “:” can be replaced by comma, this manner:

s1, s2,. . . , sn : S. This reminds the class notation {x : P(x)}, except
that instead of one “generic element” x, a list of elements s1, s2,. . . ,
sn is indicated, the outer curly braces are not used, and instead of a
property P(x), a “set-like” object called ”aggregation” is used.

The representation of a finite aggregation as the list of its elements
and as an identifier of it shows that an aggregation can be treated as
a set represented by this list together with its identifier, and this is
indicative of the intuition of “multi-set”. Once many identifiers can be
used for the same set, the aggregations can be treated as “multi-identity

objects” or “multi-id objects”.

Another intuitive interpretation of aggregations is by treating them
as common names (versus proper names), and the relation “x ∈ y” as
“x is named as y” or “y is name of x”. With this interpretation in
mind a name of exactly one named object is a proper name, and an
aggregation of this kind represents a singleton of set theory.

In such a set theory, each urelement can be treated as a multi-id
empty set, and there is no need to “singularize” the empty set as a
special object. If though one wants such an object to be singularized,
then a constant “0” can be added to the language of theory A, and
an axiom like this ∀x (¬ x : 0) to the theory A. In a theory with

151

I. Drugus

this constant a unary operation called “individuation” or (“singleton

formation” or “singularization”) can be defined like this: {x}
def
= x :

0. One can say that the aggregation theory with constant “0” also
contains “proper names” formed by this operation.

7 Conclusion

The results of this papers sound to the author as meeting the
Harvey Friedman’s expectations for a foundation for mathematics,
expressed in his “foundational issue” stated in one of his mes-
sages in the automated email list FOM (“Foundations of Mathemat-
ics” https://cs.nyu.edu/pipermail/fom/1997-November/000143.html),
where the relevant paragraph is this:

FOUNDATIONAL ISSUE. Is there an alternative adequate foun-
dation for mathematics that is based on ”inductive construction?” In
particular, one wants to capture set theory viewed as an inductive con-
struction. If not, one wants to construct a significant portion of set
theory as an inductive construction.

The aggregations introduced in this paper have the features of
multi-sets and are more specific to informatics with its “data struc-
tures”, where an object can have many copies as opposed to mathe-
matics with its “abstract structures” where an abstract object occurs in
only one copy. The extensionality axiom is specific to the abstractions
called sets and to mathematics presented in terms of such abstractions,
but it is utterly non-specific to aggregations, which can have potentially
an infinite number of copies, and to informatics operating with data
structures which can be presented in terms of aggregations. Thus, the
belief of the author is that the universics, in general, and the aggrega-
tion theory, in particular, can serve as a foundational theory also for
the informatics.

References

[1] N. Bourbaki. Elements of mathematics. Commutative algebra,
Addison-Wesley, 1972.

152

Universics: an Axiomatic Theory of . . . Part 1

[2] E. Zermelo. Sur les ensembles finis et le principle de l’induction

complète, Acta Mathematica, vol. 32 (1909), pp. 185–93.

[3] A.Tarski, S.Givant. A formalization of set theory without variables.

Colloquium Publications, vol. 41, American Mathematical Society,
Providence, R.I., 1987.

[4] L. Kirby. Finitary Set theory. Notre Dame Journal of Formal

Logic, Volume 50, Number 3, 2009, pp. 227-244.

[5] P. Bernays. A System of Axiomatic Set Theory. Part I, The Jour-
nal of Symbolic Logic (Association for Symbolic Logic) 2 (1), 1937,
pp. 65–77. (adjunction axiom)

Ioachim Drugus Received August 2, 2015

Institute of Mathematics and Computer Science

Academy of Sciences of Moldova

5 Academiei str., Chisinau, MD-2028, Moldova

E–mail: ioachim.drugus@math.md

153

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Extensionality, Proper Classes, and Quantum

Non-Individuality

William J. Greenberg

Abstract

Here I broach three questions: (1) What is a class? (2) What
constitutes a class as a set? and (3) What are the logical parame-
ters of non-individuality? I answer (1) by proposing two axioms,
which describe classes in such a way as to make clear what safe
and problematic classes have in common.

I answer (2) by extensionalizing some safe ones – empty, sum,
union and power classes – whose individuation by their members
constitutes these as sets. Problematic ones – classes of non-self-
membered sets, classes of sets, classes of self-identicals, and so
on – are not extensionalized, for their constitution as sets leads
to paradox.

I answer (3) by exhibiting a parallelism between proper classes
and quantum particles, the former unindividuated by their mem-
bers and the latter unindividuated by their properties. On my
analysis, proper classes and quantum particles – unlike sets and
classical particles, whose members and properties individuate
them – each lack individuality. For both, as it turns out, lack
self-identity.

1 Three Principles

Modulo the deductive apparatus of First-Order Logic with Weak Iden-
tity1, Russell’s Paradox follows from three principles: Unrestricted

Extensionality, Restricted Comprehension, and Unrestricted Pairing.
Concerning the first of these Michael Potter writes:

c©2015 by W. J. Greenberg
1In FOL=W : x = y → y = x and (x = y & y = z) → x = z are theses but x = x

is not. Every proof in FOL=W is a proof in FOL=. So FOL=W is a sub-theory of

FOL=.

154

Extensionality, Proper Classes, and Quantum Non-Individuality

Various theories of [classes] have been proposed since the 1900s. What

they all share is the axiom of extensionality, which asserts that if x

and y are [classes] then

∀z(z ∈ x ↔ z ∈ y) → x = y.

The fact that they share this is just a matter of definition: objects

which do not satisfy extensionality are not [classes]. ([12])

Restricted Comprehension says that for every condition P (x), some
y contains just the sets satisfying P (x).

∃y∀x(x ∈ y ↔ (set x & Px)).

And Unrestricted Pairing says that for every w, u and some y:
identity-with-w or identity-with-u is necessary and sufficient for mem-
bership in y:

∀x(x ∈ y ↔ (x = w ∨ x = u)).

Individually, each of these is plausible. But no consistent theory
features all three. For (A,B,C) prove (D),2 engendering Russell’s Para-
dox.

(A) ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) (Unrestricted Extensionality)

(B) ∃y∀x(x ∈ y ↔ set & Px) (Restricted Comprehension)

(C) ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted Pairing)

(D) ∃y∀x(x ∈ y ↔ Px) (Unrestricted Comprehension)

21. ∀z(z ∈ x ↔ z ∈ y) → x = y Unrestricted Extensionality

2. ∃y∀x(x ∈ y ↔ (set x & Px)) Restricted Comprehension

3. ∀t∀w∃y∀x(x ∈ y ↔ (x = t ∨ x = w)) Unrestricted Pairing

4. ∀t∀w∀x∃y(x ∈ y ↔ x = t ∨ x = w) 3, Quantifier Shift

5. ∀x∃y(x ∈ y ↔ x = x) 4,UI

6. ∀x∃y(x = x → x ∈ y) 5

7. ∀x[x = x → ∃y(x ∈ y)] 6

8. ∀x(x = x) → ∀x∃y(x ∈ y) 7

9. ∀x(x = x) Corollary of A

10. ∀x∃y(x ∈ y) 8,9

11. ∀x(set x) 10, definition of set

12. ∃y∀x(x ∈ y ↔ Px) 2,11

155

W. J. Greenberg

(D) can be avoided by replacing (B) with (B′), as in Zermelo Set
Theory;

(B′) ∀z∃y∀x(x ∈ y ↔ (x ∈ z & Px)) (Separation)

or by replacing (C) with (C’) as in NBG*, a sub-theory of NBG;

(C′) ∀w∀u((set w & set u) → (Restricted

∃y∀x(x ∈ y ↔ (x = w ∨ x = u))) Pairing)

or by replacing (A) with (A′), as in NBG−: an NBG-like theory with
Restricted Extensionality and Unrestricted Pairing :

(A′) ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → (Restricted
((set x & set y) ↔ x = y)) Extensionality)

(B) ∃y∀x(x ∈ y ↔ (set x & Px)) (Restricted
Comprehension)

(C) ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted
Pairing)

2 Proper Classes in NBG−

From (A′) it follows that identity is reflexive for sets (T1) but irreflexive
for proper classes (T2).

T1: ∀x(x = x ↔ set x)

T2: ∀x(¬(x = x) ↔ prop x)3

From (B) it follows that there is a class of non-self-membered sets
(T3),

T3: ∃y∀x(x ∈ y ↔ (set x & ¬(x ∈ x))),

which is not a set but a proper class (T4)–and thus not self-identical
(T5).

T4: ∀y(∀x(x ∈ y ↔ (set x & ¬(x ∈ x))) → prop y)

T5: ∀y(∀x(x ∈ y ↔ (set x & ¬(x ∈ x))) → ¬(y = y))

3Prop x
def
= ¬(set x)

156

Extensionality, Proper Classes, and Quantum Non-Individuality

Hence there is no universe class (T6).
T6: ¬∃y∀x(x ∈ y)

(A′, B) secure an empty class (T7); a pair class (T8: aka C); a sum
class (T9); a power class (T10); a class of self-identicals (T11); and a
class of sets (T12).

T7: ∃y∀x¬(x ∈ y) (Empty Class)4

T8: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Pair Class)5

T9: ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) (Sum Class)6

T10: ∀z∃y∀x(x ∈ y ↔ (set x & ∀w(w ∈ x → w ∈ z))) (Power Class)

T11: ∃y∀x(x ∈ y ↔ x = x) (Class of Self-Identicals)7

T12: ∃y∀x(x ∈ y ↔ set x) (Class of Sets)

Remark 1 : “Set x” doesn’t appear on the right-hand side of T8 or
T9 because it is redundant.

41. ∀x(x ∈ y ↔ (set x & ¬(x = x))) B, EI

2. ∃x(x ∈ y) ↔ ∃x(set x & ¬(x = x)) 1

3. ∀x(set x ↔ x = x) A’

4. ¬∃x(x ∈ y). 2, 3
51. Show ∀a∀b∃y∀x(x ∈ y ↔ x = a ∨ x = b)

2. Show ∃y∀x(x ∈ y ↔ x = a ∨ x = b)

3. ∀a∀b∃y∀x(x ∈ y ↔ (set x & (x = a ∨ x = b))) B

4. x ∈ y ↔ (set x & (x = a ∨ x = b)) 3, UI, EI

5. (x = a ∨ x = b) → x = x “=” is weakly reflexive

6. x = x → set x A’

7. (x = a ∨ x = b) → set x 5, 6

8. (x = a ∨ x = b) → x ∈ y 4,6,7

9. x ∈ y → (x = a ∨ x = b) 4

10. x ∈ y ↔ (x = a ∨ x = b) 8, 9

11. ∀x(x ∈ y ↔ x = a ∨ x = b) 10, UG

12. ∃y∀x(x ∈ y ↔ x = a∨ x = b) 11, EG: Cancel Show at line 2

13. ∀a∀b∃y∀x(x ∈ y ↔ x = a∨ x = b) 2, UG: Cancel Show at line 1
61. Show ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w))

2. ∀z∃y∀x(x ∈ y ↔ (set x & ∃w(w ∈ z & x ∈ w)))

3. ∃w(w ∈ z & x ∈ w) → set x

4. ∀z∃y∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) Cancel Show at line 1
71. ∃y∀x(x ∈ y ↔ (set x & x = x)) B

2. set x ↔ x = x A’

3. ∃y∀x(x ∈ y ↔ x = x) 1, 2

4. ∃y∀x(x ∈ y ↔ set x) 2,3

157

W. J. Greenberg

Remark 2 : From T8 it follows that the “singleton” of a non-self-
identical is empty.8

3 Some Classes Are Not Sets

Conventional wisdom decrees that some classes are not sets, either
because they are infinite totalities “too large” to be sets ([8], 44 ff ;
[11], 264 ff), or because their members “are not all present at any rank
of the iterative hierarchy”. ([7], 104) According to John Bell, however,
infinite totalities are not problematic per se. He writes:

. . . set theory. . . as originally formulated, does contain contradictions,

which result not from admitting infinite totalities per se, but rather

from countenancing totalities consisting of all entities of a certain ab-

stract kind, “manys” which, on pain of contradiction, cannot be re-

garded as “ones”. So it was in truth not the finite/infinite opposition,

but rather the one/many opposition, which led set theory to incon-

sistency. This is well illustrated by the infamous Russell paradox,

discovered in 1901. ([1], 173)

My treatment of Russell’s paradox squares with Bell’s observation.
Restricted Comprehension provides for classes of non-self-membered
sets, but on pain of contradiction these “manys” cannot be treated
as “one”, as would be the case if they were subject to Unrestricted

Extensionality. Indeed, from Restricted Comprehension it follows that
every predicate is associated with (perhaps empty) classes of sets which
satisfy it. In NBG− (and its extensions), whether such “manys” can
be “ones” – that is, sets – depends not on their size or rank, but on
whether their “oneness” would spawn contradiction ([1], op. cit.).

8“Consider a thing, a say, and its unit set {a}. . . If anything x is not a member

of the unit set {a} then that thing x is not a. And conversely, if anything x is not

a then that thing x is not a member of the unit set {a}.” ([3], 82)

158

Extensionality, Proper Classes, and Quantum Non-Individuality

4 Proper Classes, Sets, and Models

Suppose ∀z(z ∈ x ↔ z ∈ y). Are x and y identical? Are x and y sets?
Unlike NBG*, in NBG− identity and set-hood go hand-in-hand: equi-
membered x and y are identical iff these are sets.9 But from (A′,B)
it does not follow that equi-membered classes are sets. Therefore, al-
though (A′,B) prove T7-T12, they do not make equi-membered classes
identical: unlike sets, classes are not individuated by their members.

(A′,B) are satisfied only in domains which include a non-self-
identical, non-element. But such domains violate model-theoretic re-
strictions on individuals enunciated by Ruth Marcus, who in “Dispens-
ing With Possibilia” writes:

The notion of an individual object or thing is an indispensable prim-

itive for theories of meaning grounded in standard model theoretic

semantics. One begins with a domain of individuals, and there are no

prima facie constraints as to what counts as an individual except those

of a most general and seemingly redundant kind. Each individual must

be distinct from every other and identical to itself (emphasis added).

([9], 39)

5 NBG− and NBG*

NBG− and NBG∗ are deviations10 of one another, for ¬∀x(x = x) is a
theorem of NBG− and ∀x(x = x) a theorem of NBG*. I will now show
that NBG* and NBG− are definitional extensions of one another as
well. To show this I will define “=” in terms of “I” and “∈” in NBG*,

9In Elementary Logic, Mates writes, “. . . we have explicated the term ’relation’

in such a way that whatever cannot be a member of a set cannot be related by any

relation. Thus insofar as identity is a relation in this sense, such a thing cannot even

stand in this relation to itself. This would hold not only of the set of all objects that

are not members of themselves, but also of sets described by phrases that give no

hint of impending difficulties. The problem is closely related to Russell’s Antinomy,

and once again every way out seems unintuitive.” ([10], 157-8)
10“One system is a deviation of another if it shares the vocabulary of the first,

but has a different system of theorems/valid inferences.” ([5], 3)

159

W. J. Greenberg

and “I” in terms of “∈” in NBG−; and then show that NBG* ⊢ NBG−,
and NBG− ⊢ NBG*.

NBG*:
(∈) 1*: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ∀z(x ∈ z ↔ y ∈ z))

(I) 2*: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy)

3*: ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y))

(Set) 4*: ∃y∀x(x ∈ y ↔ (set x & Px))

5*: ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu)))

(Def) D1*: set x
def
= ∃y(x ∈ y)

D2*: x = y
def
= (xIy & set x & set y)

NBG
−

:
(∈) 1−: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ∀z(x ∈ z ↔ y ∈ z))

(=) 2−: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y))

3−: ∀x∀y(x = y → ∀z(z ∈ x ↔ z ∈ y))

(Set) 4−: ∃y∀x(x ∈ y ↔ (set x & Px))

(Def) D1−: set x
def
= ∃y(x ∈ y)

D2−: xIy
def
= ∀z(z ∈ x ↔ z ∈ y)

NBG* ⊢ NBG−: Since 1− = 1* and 4− = 4*, to show that NBG*
⊢ NBG− I will show that NBG* ⊢ 2−, 3−

Proof of 2
−
:

1. Show ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y))

2. ∀z(z ∈ x ↔ z ∈ y) Assume

3. Show (set x & set y) ↔ x = y

4. x = y
def
= (xIy & set x & set y) D2*

5. x = y → (set & set y) 4

6. Show (set x & set y) → x = y

7. set x & set y Assume

8. Show x = y

9. xIy & set x & set y 2*, 2, 7

10. x = y 9, D2*: Cancel Show line 8

11. (set x & set y) → x = y 7, 8: Cancel Show line 6

12. (set x & set y) ↔ x = y 5, 6: Cancel Show line 3

13. ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → ((set x & set y) ↔ x = y)) 2, 3: Cancel

Show line 1

160

Extensionality, Proper Classes, and Quantum Non-Individuality

Proof of 3
−

:
1. Show ∀x∀y(x = y → ∀z(z ∈ x ↔ z ∈ y))

2. x = y Assume

3. Show ∀z(z ∈ x ↔ z ∈ y))

4. x = y
def
= (xIy & set x & set y) D2*

5. xIy 2, 4

6. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 3*

7. ∀z(z ∈ x ↔ z ∈ y) 5, 6: Cancel Show line 3

8. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 2, 3: Cancel Show line 1

NBG
− ⊢ NBG

∗
: Since 1− = 1* and 4− = 4*, to show that

NBG− ⊢ NBG∗ I will show that NBG− ⊢ 2*, 3*,5*.

Proof of 2*:
1. Show ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy)

2. ∀z(z ∈ x ↔ z ∈ y) Assume

3. Show xIy

4. xIy
def
= ∀z(z ∈ x ↔ z ∈ y) D2−

5. xIy 2, 4: Cancel Show line 3

6. ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → xIy) 2, 3: Cancel Show line 1

Proof of 3*:
1. Show ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y))

2. xIy
def
= ∀z(z ∈ x ↔ z ∈ y) D2−

3. ∀x∀y(xIy → ∀z(z ∈ x ↔ z ∈ y)) 2: Cancel Show line 1

Proof of 5*:

1. Show ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu)))

2. set w & set u Assume

3. Show ∃y∀x(x ∈ y ↔ (xIw ∨ xIu))

4. ∃y∀x(x ∈ y ↔ (set x & Px)) 4−

5. ∃y∀x(x ∈ y ↔ (set x & x = w ∨ x = u)) Instance of 4

6. (x = w ∨ x = u) → set x 1−

7. x ∈ y → set x D2−

8. ∃y∀x(x ∈ y ↔ (x = w ∨ x = u)) 5, 6, 7

9. x = w ↔ ∀z(z ∈ x ↔ z ∈ w) 3−

10. x = u ↔ ∀z(z ∈ x ↔ z ∈ u) 3−

11. ∃y∀x(x ∈ y ↔ (∀z(z ∈ x ↔ z ∈ w) ∨ ∀z(z ∈ x ↔ z ∈))) 8, 9, 10

12. ∃y∀x(x ∈ y ↔ xIw ∨ xIu) 11, D2−: Cancel

Show line 3

13. ∀w∀u((set w & set u) → ∃y∀x(x ∈ y ↔ (xIw ∨ xIu))) 2, 3: Cancel

Show line 1

161

W. J. Greenberg

Each a definitional extension of the other, NBG* and NBG−are
accordingly equi-consistent. The question thus arises, Which of these
two systems–NBG* (in which identity is reflexive and proper classes are
individuated by their members), or NBG− (in which identity is non-
reflexive and proper classes are not individuated by their members)–
should be employed as a setting for theories in which all sets are classes,
but some classes are not sets?

6 Classes Into Sets

(5−, 6−, 7−, 8−) constitute as sets: pair classes, sum classes, power
classes, and sub-classes of sets. For it follows from (5−,6−, 7−, 8−)
that these are individuated by their members.

5−: ∀y(∀x(x ∈ y ↔ (x = a ∨ x = b)) → set y) (Pair Set)

6−: ∀z∀y(∀x(x ∈ y ↔ ∃w(w ∈ z & x ∈ w)) → set y) (Sum Set)

7−: ∀z∀y(∀x(x ∈ y ↔ (set x & ∀w(w ∈ x → w ∈ z))) → set y) (Power Set)

8−: ∀z∀y(∀x(x ∈ z → x ∈ y) → (set y → set z)) (Subsets)

To guarantee an empty set, Z and its extensions require an axiom
of infinity or an axiom of set existence; and Lemmon’s NBG requires
an axiom, “set ∅”. ([6], 46) In NBG− no such apparatus is required,
for (1−, 2−, 5−) guarantee an empty set.

Thus (1−, 2−, 5−) prove T13,

T13: ∀y(∀x¬(x ∈ y) → set y) (Empty Set)

which together with T7: ∃y∀x¬(x ∈ y) establish a unique empty set.

Proof of T13:

Suppose y empty. From (T7, T8, 5−) we have ∃z(set z & ∀x(x ∈

z ↔ x = y)), and so by EI: set z & ∀x(x ∈ z ↔ x = y). Hence
∃x(x ∈ z) ↔ ∃x(x = y). Now suppose, contrary to T13, that y is a
proper class. Then ¬(y = y), ¬∃x(x = y), and ¬∃x(x ∈ z), so that
z and y have the same members. So because z is a set, from T14 it
follows that y is a set:

162

Extensionality, Proper Classes, and Quantum Non-Individuality

T14: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → (set x ↔ set y)) (EquiEqui)11

So if y is a proper class, y is a set. Hence y is a set.

7 NBG− and Foundation

4− provides for a class of self-membered sets:

T15: ∃y∀x(x ∈ y ↔ x ∈ x) (Class of self-membered sets)

The Anti-Foundation axiom 9− would constitute this class as a set.

9−: ∀y(∀x(x ∈ y ↔ x ∈ x) → set y) (Anti-Foundation)

But a Foundation axiom such as 9−′ would constitute such a class
as a proper class.

9−′ :∀y(∀x(x ∈ y ↔ x ∈ x) → ¬(set y)) (Foundation)

8 NBG− and the Identity of Indiscernibles

A set-theoretic analogue of Leibniz’s principle of the Identity of Indis-
cernibles is:

∀x∀y(∀z(x ∈ z ↔ y ∈ z) → x = y) (Unrestricted PII)

Unrestricted PII is refuted in NBG−. For by satisfying ¬(x = x),
proper classes refute ∀x(x = x), a corollary of PII. PII must thus be
restricted, by excluding proper classes from its range of application,
thus:

∀x∀y(∀z(x ∈ z ↔ y ∈ z) → ((set x & set y) ↔ x = y)) (Restricted PII)

And to save pairing and extensionality, which together prove unre-
stricted PII, either pairing or extensionality must be restricted, as in
NBG* or NBG−.

11If x,y are equi-membered, from 1− it follows that x is an element iff y is an

element. So set x iff set y.

163

W. J. Greenberg

9 Quasi-Set Theories, Non-Individuality, and

¬(x = x)

Quasi-Set theories deal with collections of indistinguishable objects
such as quantum particles. Such theories recognize two kinds of en-
tities: M-Atoms, which “have the properties of standard Ur-elemente

of ZFU”; and m-atoms, which “represent the elementary basic entities
of quantum physics”. To m-atoms “the concept of identity does not
apply.” In Quasi-Set theories, “this exclusion is achieved by restricting
the concept of formula: expressions like x = y are not well formed
if x and y denote m-atoms. The equality symbol is not a primitive
logical symbol. . . ”. ([4], p 276] Whereof they cannot speak, thereof
French and Krause must remain silent. Because identity does not fig-
ure among the primitive notions of Quasi-Set theory, they are unable
to ask whether their non-self-identity grounds the non-individuality of
quantum particles.

To be an individual is to have a property that exactly one thing has.
Call this an individuating property. For x not to have an individuating
property, it must be the case that for every P , if x has P there is some
y such that y has P and ¬(x = y). But quantum particles share all

their properties. Hence if x is a quantum particle, there is no P such
that x and only x has P .

Nevertheless, it is a theorem of Zermelo-Fraenkel set theory with
ur-elemente (ZFU) that everything in its domain belongs to a unit set
– a set of which it is the sole member. Extrapolating from sets to
properties, everything in the domain of ZFU thus has an individuating
property. Quantum particles however lack individuating properties.
Quantum particles thus falsify the pairing axiom of ZFU, according
to which everything belongs to a unit set – unless one gerrymanders
identity by making it inapplicable to quantum particles.12

12Dean Rickles writes, “An immediate problem with the denial of primitive iden-

tities is, then, that it is unclear how one is able to support set theory. . . (I owe this

point to Steven French). There are ways of accommodating the denial of primitive

identities through the use of ‘quasi-set theory’ in which the identity relation is not

a well-formed formula for indistinguishable objects (see French & Krause [1999] and

164

Extensionality, Proper Classes, and Quantum Non-Individuality

In contrast, the logical setting I propose for non-individuality is
one in which identity is applicable to quantum particles. Indeed, it
is this applicability which expands logic’s domain to include non-self-
identicals, whose breach of the Identity of Indiscernibles establishes
their non-individuality.

10 Summary and Conclusion
A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) (Unrestricted Extensionality)

B: ∃y∀x(x ∈ y ↔ set x & Px) (Restricted Comprehension)

C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) (Unrestricted Pairing)

Modulo a background logic in which identity is a partial equivalence
relation, the inconsistency of (A,B,C) can be resolved by replacing B
with B′, as in Z*;

Z*

A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) Unrestricted Exten-

sionality

B′: ∀z∃y∀x(x ∈ y ↔ (x ∈ z &Px)) Separation

C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) Unrestricted Pairing

or by replacing C with C’, as in NBG*;

NBG*

A: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y) Unrestricted Exten-

sionality

B: ∃y∀x(x ∈ y ↔ (set x & Px)) Restricted Compre-

hension

C′: ∀w∀u((set w & set u) → ∃y∀x(x ∈

y ↔ (x = w ∨ x = u)))
Restricted Pairing

or by replacing A with A’, as in NBG−.
Z* and NBG* are sub-theories of Z and NBG. NBG− and NBG*

are deviations and definitional extensions of one another.
Highlighting the rivalry of NBG* and NBG−, I have proposed

NBG− – in which identity is reflexive for sets and classical particles, but

Krause [1992])”. ([13], 106)

165

W. J. Greenberg

NBG
−

A′: ∀x∀y(∀z(z ∈ x ↔ z ∈ y) →

((set x & set y) ↔ x = y))
Restricted Exten-

sionality

B: ∃y∀x(x ∈ y ↔ (∃z(x ∈ z) & Px)) Restricted Compre-

hension

C: ∀w∀u∃y∀x(x ∈ y ↔ x = w ∨ x = u) Unrestricted Pairing

irreflexive for proper classes and quantum particles – as a setting for
class and set theory and framework for quantum non-individuality.13

References

[1] Bell, John L. Oppositions and paradoxes in mathematics and phi-
losophy. Axiomathes 15.2:165-80, 2005.

[2] Ben-Menahem, Yemima, editor. Hilary Putnam. Cambridge Uni-
versity Press, Cambridge, UK, 2005.

[3] Bigelow, John. Sets are haecceities. In D. M. Armstrong et al, ed-
itors, Ontology, causality and mind, pages 73-96. Cambridge Uni-
versity Press, Cambridge, UK, 1993.

13As things now stand, non-self-identicals in NBG are non-elements, making their

identification with quantum particles problematic. To surmount this obstacle, a

more restrictive definition of “set” is required:

set x
def
= ∃y(x ∈ y & ∀z(z ∈ y → z = x)) (

def
= Set)

From (
def
= Set) and “set x ↔ x = x” (a corollary of 2 – 2 holding under both defi-

nitions of “set”), it follows that possession of an individuating property is necessary

and sufficient for self-identity:

x = x ↔ ∃y(x ∈ y & ∀z(z ∈ y → z = x)) (Ind)

Hence ¬(x = x) if, and only if, x is not a member of any unit class.

¬(x = x) ↔ ∀y(¬(x ∈ y) ∨ ∃z(z ∈ y & ¬(z = x))) (Ind)

This will be the case if x is not a member of any class (think “proper” classes);

or if every class that x belongs to is multi-membered (think quantum particles). In

both cases, x can be said to lack individuality.

166

Extensionality, Proper Classes, and Quantum Non-Individuality

[4] French, Steven, and Décio Krause. Identity in physics: A histori-

cal, philosophical, and formal analysis. Clarendon Press, Oxford,
UK, 2006.

[5] Haack, Susan. Deviant logic: Some philosophical issues. Cam-
bridge University Press Archive, Cambridge, UK, 1974.

[6] Lemmon, Edward John. Introduction to axiomatic set theory.
Routledge & K. Paul, London/New York, 1969.

[7] Lewis, David K. On the plurality of worlds. (Vol. 322). Blackwell,
Oxford, UK, 1986.

[8] Maddy, Penelope. Naturalism in mathematics. Clarendon Press,
Oxford, UK, 1997.

[9] Marcus, Ruth Barcan. Dispensing with possibilia. Proceedings and
Addresses of the American Philosophical Association. American
Philosophical Association, 1975.

[10] Mates, Benson. Elementary logic. 2nd edition. Oxford University
Press, New York, 1972.

[11] Moore, Gregory H. Zermelo’s axiom of choice: Its ori-

gins, development, and influence. Springer-Verlag, New
York/Heidelberg/Berlin, 1982.

[12] Potter, Michael. Different systems of set theory. Sourced from
http://www.scribd.com/doc/172940806/Different-Systems-of-Set-
Theory.

[13] Rickles, Dean. Symmetry, structure, and space time. Elsevier, Am-
sterdam, the Netherlands, 2008.

William J. Greenberg Received July 10, 2015

USA

E–mail: wgreenb@gmail.com

167

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Fundamental theorems of

extensional untyped λ-calculus revisited

Alexandre Lyaletsky

Abstract

This paper presents new proofs of three following fundamental
theorems of the untyped extensional λ-calculus: the η-Postpo-
nement theorem, the βη-Normal form theorem, and the Norma-
lization theorem for βη-reduction. These proofs do not involve
any special extensions of the standard language of λ-terms but
nevertheless are shorter and much more comprehensive than their
known analogues.

Keywords: extensional untyped λ-calculus, βη-reduction,
postponement of η-reduction, η-Postponement theorem, βη-Nor-
mal form theorem, Normalization theorem for βη-reduction.

1 Introduction

The untyped version of the λ-calculus is considered.

Its variables are denoted by symbols x, y and z, λ-terms by t, p, q,
u and w, redeces by △ (of cause, indices are sometimes used). All the
other denotations used in the paper are completely standard or other-
wise will be introduced separately.

Throughout the paper the variable convention is assumed to be
satisfied; hence the conditions x /∈ t and x /∈ FV (t) say the same.

Recall some basic facts concerning η- and βη-reduction. By def-
inition, the notion η of η-reduction is {< λx.wx,w > | x /∈ w }, the
notion βη of βη-reduction is β ∪ η. The notions of η- and βη-reduction
induce, in the usual way, the dictionaries of their derivative notions
(such as η- and βη-redeces, the relations of one-step and multi-step η-

c©2015 by Alexandre Lyaletsky

168

Fundamental theorems of extensional untyped λ-calculus revisited

and βη-reduction, η- and βη-reduction sequences, etc.). Remark that
the notion of η-reduction is strongly normalizing since the contraction
of an η-redex in any λ-term decreases its length.

The extensional untyped λ-calculus studies properties of the notion
of βη-reduction as well as of its derivative relations, especially ։βη

(multi-step βη-reduction) and =βη (βη-convertibility). Along with
the Church-Rosser theorem for βη-reduction (and not taking the re-
sults on λ-representability into account), the most important results
in the extensional λ-calculus are: 1) the η-Postponement theorem,
2) the βη-Normal form theorem, 3) the Normalization theorem for
βη-reduction.

In the paper, new proofs of the theorems 1) – 3) are constructed.
These proofs do not involve any special extensions of the standard
language of λ-terms but nevertheless are shorter and much more com-
prehensive than their original or known analogues. (For example, the
original proof of the theorem 3) by J.W.Klop takes over 20 pages and
is technically very complicated.) The new proofs are arranged in the
following logical order: 1) ⇒ 2) ⇒ 3).

2 Postponable binary relations

Our proof of the η-Postponement theorem exploits some general pro-
perties which are more convenient to be observed and studied in the
general set-theoretic situation.

Definition 1. Given a set A and binary relations Q and R on A, then
R is said to be postponable after Q if the following diagram holds:

·
Q

��✁
✁
✁
✁

R

��
❂❂

❂❂
❂❂

❂

·

R
��
❂

❂
❂

❂ ·

Q
��✁✁
✁✁
✁✁
✁

·

(Here and in the sequel, the language of diagrams of binary relations
is used. In the general case, such a diagram is a configuration on the

169

Alexandre Lyaletsky

plane consisting of points some of which may be labelled by elements
of a fixed set A, and arrows between points, each obligatorily labelled
by a binary relation on A. Each arrow can be of two sorts: usual or
dotted. If a diagram contains a usual arrow from a to b and labelled by
R, then the latter expresses that aR b; if a point has no label, then it
is considered to be bounded by a universal quantifier (restricted by A).
At that, precisely those arrows are dotted that lead to or start with
the elements, the existence of which is being claimed (together with
the conditions imposed by the labels). Thus, each diagram (containing
at least one dotted arrow) determines a certain implicative statement.
For example, the diagram from the last definition means the following:

∀a, b, c ∈A
[

aR b & bQ c ⇒ ∃ d ∈A (aQd & dR c)
]

,
i.e. that R ◦ Q ⊆ Q ◦ R, where ◦ denotes the usual composition of
binary relations.)

Note that if binary relations Q = f and R = g are functions, then
g is postponable after f if and only if g ◦ f = f ◦ g, that is f and
g commute with each other. Therefore, in this case f is postponable
after g as well. However in the general case the latter is not valid, i.e.
the notion of postponability is not symmetric.

By R+ and R∗ denote, resp., the transitive and reflexive-transitive
closures of a binary relation R.

It can easily be proved that if R is postponable after Q, then R∗ is
postponable after Q∗. Containing this statement as a particular case,
the following result can be viewed as its natural generalization.

Postponement Lemma. Let Q and R be binary relations on a set A

such that for any triple of elements of A, at least one of the following

diagrams holds:

·
Q

��✁
✁
✁
✁

R

��
❂❂

❂❂
❂❂

❂ ·

Q+

��
✤

✤

✤

✤

✤

✤
R

��
❂❂

❂❂
❂❂

❂

·

R∗

��
❂

❂
❂

❂ ·

Q
��✁✁
✁✁
✁✁
✁

or ·

Q
��✁✁
✁✁
✁✁
✁

· ·

Then R∗ is postponable after Q∗ and (Q ∪R)∗ = Q∗◦R∗.

170

Fundamental theorems of extensional untyped λ-calculus revisited

Proof. Since R∗ ◦ Q∗ ⊆ (Q ∪ R)∗, for proving the postponability, it is
sufficient to show that (Q ∪R)∗ ⊆ Q∗◦R∗, which also substantiates the
second statement (the inclusion opposite to the latter holds trivially).
Let a and c be any elements of A with a (Q∪R)∗c. Obviously, it can be
assumed that a 6= c. Then there is, for some elements b1, . . . , bn−1 ∈ A,
a valid sequence of the form

b0 S0 b1 S1 b2 S2 . . . Sn−2 bn−1 Sn−1 bn , (1)

where b0 = a, bn = c, and Si ∈ {Q,R} for every i ∈ {0, n − 1}.
Consider its leftmost “two-step” segment of the form bkRbk+1Qbk+2

(if there is no such a segment, there is nothing to prove). If, for simp-
licity, the “Q-prefix” of (1) is empty, then (1) has the following form:

b0Rb1Rb2R . . . R bk−1Rbk Rbk+1Qbk+2 Sk+2 bk+3 Sk+3 . . . Sn−1bn . (2)

Applying one of the diagrams from the conditions of the lemma to
the underlined segment, one of the following sequences will be obtained:

b0R . . . R bk−1Rbk Qb′k+1
Rb′k+1, 1R . . . R b′k+1,mRbk+2Sk+2 . . . Sn−1 bn

(in the case of the left diagram), where m is a natural number, or

b0R . . . R bk−1Rbk Qb′k+1, 1Q . . . Q b′k+1, mQbk+2Sk+2 . . . Sn−1 bn

(in the case of the right diagram), wherem is a positive natural number.
Comparing the obtained sequences with the previous one, notice

that in the both cases, the position of the leftmost occurrence of Q is
one item to the left than that was in (2). Therefore, the proof can be
completed by induction, applied to the set of sequences of the form (1)
that is considered to be lexicographically ordered in accordance with
the positions of all occurrences of Q in a sequence under consideration
when reading it from left to right. �

Remark. The Postponement lemma states less than that was proved.
Actually, the above given proof determines an algorithm of recon-
structing each sequence (1) to a form b0 Q . . . Q dR . . . R bn (of cause,
provided the diagrams are satisfied). This algorithm will be referred to
as postponing R after Q.

171

Alexandre Lyaletsky

3 Postponement of η-reduction

Note that when considering diagrams over the set of λ-terms some ar-
rows of which are labelled by one-step reductions, it is often convenient
to introduce additional labels for (some of) these arrows for indicating
the contracted redex occurrences. (Examples are given below.)

Given a one-step βη-reduction sequence σ : t1
△

−→βη t2. If △1 is
such a βη-redex occurrence in t1 that has exactly one residual in t2
(w.r.t. σ), then the latter will be denoted by

−→
△1. If △2 is a βη-redex

occurrence in t2, then it can be trivially verified that there can be at
most one βη-redex occurrence in t1 for which △ is a residual of (or
belongs to the set of residuals of); in this case, it is denoted by

←−
△2, i.e.

←−
△2 is a “coresidual” of △2 w.r.t. σ.

η-Postponement Theorem. [1; 2] Every finite βη-reduction sequ-

ence σ : t1 ։βη t2 can be reconstructed into a sequence of the form

σ′ : t1։β t
′
։η t2, for some λ-term t′.

Proof. Let us verify the diagrams from the conditions of the Post-
ponement lemma (with Q =−→β and R =−→η). For a given two-step

βη-reduction sequence of the form t1
△η

−→η t2
△
β

−→β t3, note that the
coresidual

←−
△β always exists and is always a β-redex occurrence in t1.

Let △η ≡ λx.wx,
←−
△β ≡ (λz.p)q and △β ≡ (λy.p′)q′. Consider all possi-

ble cases of the mutual locations of the redeces △η and
←−
△β in t1:

1. △η ∩
←−
△β = ∅

2. △η⊃
←−
△β

3. △η⊂
←−
△β

3.1. △η ≡ λx.(λy.p′)x (hence z ≡ x and p ≡ (λy.p′)x)

3.2. △η ⊆ p (hence z ≡ y and q ≡ q′)

3.3. △η ≡ λx.q′x (hence z ≡ y and p ≡ p′)

3.4. △η ⊂ q (hence z ≡ y and p ≡ p′)

The cases 1, 2 and 3.2 are trivial: one only needs to reverse the
order of contractions (first, to contract

←−
△β in t1 and then, to contract

the residual
−→
△η of △η in the resulting term), which all lead to a diagram

172

Fundamental theorems of extensional untyped λ-calculus revisited

of the form:
t1

←−
△β

β
��✁
✁
✁
✁

△η

η��❄
❄❄

❄❄
❄❄

·

−→
△η

η
��
❂

❂
❂

❂ t2

△
β

β
��⑧⑧
⑧⑧
⑧⑧
⑧

t3

Case 3.1:
. . . (λx.(λy.p′)x)q′ . . .

(λx.(λy.p′)x)q′

β
xxq
q
q
q
q
q
q
q
q
q
q
q

λx.(λy.p′)x

η
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼

. . . (λy.p′)q′ . . .

(λy.p′)q′

β &&▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

▼
▼

. . . (λy.p′)q′ . . .

(λy.p′)q′

βxxqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q

. . . p′[y := q′] . . .

Case 3.3:
. . . (λy.p′)(λx.q′x) . . .

(λy.p′)(λx.q′x)

β
ww♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

λx.q′x

η
&&▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

▼

. . . p′[y := λx.q′x] . . .

η '' ''❖
❖

❖
❖

❖
❖

❖
❖

❖
❖

❖
❖

. . . (λy.p′)q′ . . .

(λy.p′)q′

βxxqq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq

. . . p′[y := q′] . . .

Finally, the verification of the case 3.4 leads to a diagram similar
to that obtained when considering the case 3.3. �

173

Alexandre Lyaletsky

4 βη-Normal forms

Note that for a λ-term of the form (λx.wx)q, where x /∈ w, the both

contractions (λx.wx)q
(λx.wx)q
−−−−−→β wq and (λx.wx)q

λx.wx
−−−−→η wq lead to

the same result wq.

Definition 2. An η-redex occurrence △η ≡ λx.wx in a λ-term t is
called β-replaceable, if △η is a re-part of some β-redex occurrence in t,
i.e. there is a term q such that (λx.wx)q is a β-redex occurrence in t.

Lemma 1. Given a finite η-reduction sequence σ : t ։η t′ in which

neither of the contracted η-redeces is β-replaceable. If t′ is a β-normal

form, then so is t.

Proof. Obviously, it is sufficient to prove the lemma for the case of

a one-step η-reduction sequence σ : t
△η

−→η t′. If t is not a β-normal
form, then it contains some β-redex occurrence (λx.p)q and hence
t ≡ . . . (λx.p)q Since △η is not β-replaceable, it follows that
△η 6≡ λx.p. Then, evidently, (λx.p)q has a nonempty residual in t′

which is a β-redex occurrence. Thus, t′ is not a β-normal form. �

βη-Normal Form Theorem. [1; 3] An arbitrary λ-term t has a

βη-normal form ⇔ t has a β-normal form.

Proof. The sufficiency is obvious, since if t has a β-normal form t′,
then any η-redex contraction in t′ does not create new β-redeces and
decreases the length of t′.

Let us prove the necessity. Suppose a λ-term t has a βη-normal
form t′. By the Church-Rosser theorem for βη-reduction ([1; 2]), then
there is a βη-reduction sequence σ : t ։βη t′. Moreover, it can be as-
sumed without loss of generality that neither of the η-redeces being
contracted in σ is β-replaceable (since any such an η-redex can be re-
placed in σ with the corresponding β-redex). Furthermore, from the
analysis of the diagrams from the proof of the η-Postponement theorem
it can be concluded that when postponing η-reduction in σ, no con-
tracted β-replaceable η-redeces can emerge. Therefore, there exists a
βη-reduction sequence of the form σ′ : t ։β u ։η t′, for some λ-term u,

174

Fundamental theorems of extensional untyped λ-calculus revisited

that does not contract neither of the β-replaceable η-redeces. Lemma
1 finally implies that u is the needed β-normal form of t. �

5 Normalization theorem for βη-reduction

Recall that for a given notion R of reduction and λ-term t, an R-left-
most redex is any such an R-redex occurrence in t, the position (in t) of
the first symbol of which cannot be strictly to the right of the position
of the first symbol of any other R-redex occurrence. Therefore, this
notion is not deterministic in the general case, i.e. for some notion R

of reduction, a term t may have two or more distinct leftmost R-redex
occurrences. By this reason, the latter notion is sometimes strength-
ened to the notion of the R-leftmost-outermost redex occurrence which
is always unique in every λ-term (if any).

As to the βη-reduction, the notion of a βη-leftmost redex occurrence
is not deterministic as well. However this is a small problem, since the
only possibility for the ambiguity in this case is when considering terms
with subterm occurrences of the form (λx.px)q, where x /∈ p (having
two distinct leftmost βη-redex occurrences: λx.px and (λx.px)q, the
both contractions of which lead to the same result pq).

By leftβη denote the so-called βη-leftmost strategy which always
contracts, in every λ-term t, the βη-leftmost-outermost redex occur-
rence (if any). It generates, for each term t, a certain finite or infinite
βη-reduction sequence starting with t which is also called βη-leftmost.
Analogously, by leftβ denote the β-leftmost strategy.

We write t −−−−→
βη-left

t′ and t −−−−→
β-left

t′ instead of, resp., t′ = leftβη (t)

and t′ = leftβ (t). The notation t
△

−−−−→
βη-left

η t
′ means that t −−−−→

βη-left
t′

and t
△

−−→η t′. Therefore, −−−−→
βη-left

η can be considered as a binary rela-

tion on the set of λ-terms; by
βη-left, 6=∅

// //
η denote its transitive closure.

The relations −−−−→
βη-left

β and
βη-left, 6=∅

// //
β are introduced analogously,

the same concerns −−−−→
β-left

β and
β-left, 6=∅

// //
β .

175

Alexandre Lyaletsky

Lemma 2. The following diagram holds:

·
β-left, 6=∅

β ����✁
✁
✁
✁ βη-left, 6=∅

η�� ��
❂❂

❂❂
❂❂

❂

·

βη-left, 6=∅

η
�� ��
❂

❂
❂

❂ ·

β-left, 6=∅

β
����✁✁
✁✁
✁✁
✁

·

Proof. First consider the case of a two-step reduction sequence of the

form t1
△η

−−−−→
βη-left

η t2
△
β

−−−−→
β-left

β t3. Since △η is the βη-leftmost-outermost

redex, it follows that △η is strictly to the left of
←−
△ β in t1. Obviously,

this is possible only in the cases 1 and 2 from the proof of the η-Postpo-
nement theorem, which, as noted there, leads to the following diagram:

t1
β-left

β ←−
△β △η���

�
�
� βη-left

η
��
❃❃

❃❃
❃❃

❃❃

t′
2

βη-left

η

−→
△η △

β

��
❃

❃
❃

❃
t2

β-left

β
����
��
��
��

t3

(at that, evidently,
←−
△ β is indeed the β-leftmost redex occurrence in t1

and
−→
△η the βη-leftmost-outermost occurrence in t′2).

Now the general case can be concluded from the following typical
example of a diagram can arise under such conditions (in which all the
labels are omitted due to the triviality of its construction):

· //

��
✤
✤
✤ · //

��
✤
✤
✤ · //

��
✤
✤
✤ · //

��
✤
✤
✤ ·

��
· //❴❴❴

��
✤
✤
✤ · //❴❴❴

��
✤
✤
✤ · //❴❴❴

��
✤
✤
✤ · //❴❴❴

��
✤
✤
✤ ·

��
· //❴❴❴

��
✤

✤

✤ · //❴❴❴

��
✤

✤

✤ · //❴❴❴

��
✤

✤

✤ · //❴❴❴

��
✤

✤

✤ ·

��
· //❴❴❴ · //❴❴❴ · //❴❴❴ · //❴❴❴ · �

176

Fundamental theorems of extensional untyped λ-calculus revisited

Recall that a βη-strategy f is called normalizing if whenever a term
t has a βη-normal form, fn(t) is a βη-normal form for some natural
number n.

Normalization Theorem for βη-Reduction. [4] The strategy

leftβη is normalizing.

Proof. Supposing the contrary, there is a term t having a βη-normal
form, the βη-leftmost reduction sequence σ of which is infinite. It will
be proved, by means of postponing η-reduction with the help of Lemma
2, that σ can be reconstructed into the infinite β-leftmost reduction
sequence (starting with t), which leads to a contradiction: indeed, by
the Normalization theorem for β-reduction ([1; 3]), then t does not
have a β-normal form and by the βη-Normal form theorem, t does not
have a βη-normal form as well.

It can be assumed without loss of generality that σ contracts at least
one η-redex (otherwise, σ is already β-leftmost) and, moreover, that it
contracts the infinite number of η-redeces (otherwise, exclude from σ

such an initial segment that the result contracts β-redeces only, which
sends back to the previous case). On the other hand, σ should contract
the infinite number of β-redeces, since the notion of η-reduction is
strongly normalizing. In addition to all these conditions, it can also
be assumed, for definiteness, that σ starts with an η-redex contraction
(otherwise, exclude from σ its β-prefix). Then σ can be represented in
a form of the following infinite sequence:

σ : t0
βη-left, 6=∅

// //
ηu0 βη-left, 6=∅

// //
β t1 βη-left, 6=∅

// //
ηu1 βη-left, 6=∅

// //
β . . . ,

where t0 ≡ t (i.e. σ is being divided into alternating β- and η-segments).

Finally, notice that every βη-leftmost reduction sequence that con-
tracts β-redeces only is evidently the β-leftmost reduction sequence as
well. Now the following infinite diagram can be constructed with the
help of Lemma 2:

177

Alexandre Lyaletsky

t0

β-left, 6=∅

β ��
��
✤

✤

✤ βη-left, 6=∅ η
// // u0

β-left, 6=∅

β����

·

β-left, 6=∅

β ��
��
✤

✤

✤ βη-left, 6=∅ η
// //❴❴❴❴❴❴❴ t1

βη-left, 6=∅ η
// // u1

β-left, 6=∅

β����

·

β-left, 6=∅

β ��
��
✤

✤

✤ βη-left, 6=∅ η
// //❴❴❴❴❴❴❴❴❴❴❴❴❴❴ t2

βη-left, 6=∅ η
// // u2

β-left, 6=∅

β����

·

��
��

βη-left, 6=∅ η
// //❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ t3

βη-left, 6=∅ η
// // u3

��
��

· · · · · ·

Its vertical line determines the β-leftmost reduction sequence starting
with t0 ≡ t. Thus, the latter is indeed infinite, just as expected. �

An interested reader is invited to compare the constructed proofs
with their original or known analogues. The detailed references to the
latter are contained in the following table compiled for his convenience:

η-Postponement theorem
[1, pp. 384− 386];
[2, pp. 132− 135]

βη-Normal form theorem
[1, pp. 384− 386];
[3, pp. 313− 314]

Normalization theorem for βη-reduction [4, pp. 279− 290]

References

[1] H. Barendregt, The Lambda Calculus. Its Syntax and Semantics

(revised ed.), Elsevier (1984).

[2] H. Curry, R. Feys, and W. Craig, Combinatory Logic (vol. I),
North-Holland: Amsterdam (1958).

[3] H. Curry, J. Hindley, and J. Seldin, Combinatory Logic (vol. II),
North-Holland: Amsterdam (1972).

178

Fundamental theorems of extensional untyped λ-calculus revisited

[4] J.W. Klop, Combinatory reduction systems (PhD thesis),
Utrecht university (1980).

Alexandre Lyaletsky Received July 22, 2015

Alexandre Lyaletsky

Institution: Kiev National Taras Shevchenko university (faculty of cybernetics)

Phone: +38 067 4086768

E–mail: foraal@mail.ru

179

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Semantic Properties of Logics of Quasiary

Predicates

Mykola Nikitchenko, Stepan Shkilniak

Abstract

In the paper we investigate semantic properties of program-
oriented algebras and logics defined for classes of quasiary pred-
icates. Informally speaking, such predicates are partial predi-
cates defined over partial states (partial assignments) of variables.
Conventional n-ary predicates can be considered as a special case
of quasiary predicates. We define first-order algebras and logics
of quasiary non-deterministic predicates and investigate their se-
mantic properties. Obtained results can be used to prove logic
validity and completeness.

Keywords: First-order logic, quasiary predicate, partial
predicate, non-deterministic predicate.

1 Introduction

Mathematical logic is one of the basic disciplines for computer science.
To use effectively mathematical logic it is important to construct log-
ical systems that are adequate for problems considered in computer
science. Classical logic, despite its numerous advantages, has some re-
strictions for its use in this area. For example, classical logic is based
on the class of total n-ary predicates, while in computer science partial
and non-deterministic predicates often appear. Therefore many logical
systems which better reflect properties of such kind were constructed
[1, 2]. One of specific features for computer science is quasiarity of
predicates. Such predicates are partial predicates defined over partial
states (partial assignments) of variables. Conventional n-ary predicates

c©2015 by M. Nikitchenko, S. Shkilniak

180

Semantic Properties of Logics of Quasiary Predicates

can be considered as a special case of quasiary predicates. In our pre-
vious works [3, 4, 5] we investigated the class of partial deterministic
(single-valued) predicates and constructed corresponding logics.

This paper aims to develop a semantic basis for construction of log-
ics of non-deterministic (many-valued) quasiary predicates. To realize
this idea we should first construct predicate algebras using composition-

nominative approach [6]. Terms of such algebras specify the language
of logic. Then we should define interpretation mappings. At last, we
should construct calculi of sequent type for defined logics.

It is important to admit that constructed logics better reflect
specifics of computer science problems, but the opposite side of this
feature is that the methods of logic investigation turn out to be more
complicated. In this paper we concentrate on semantic properties of
first-order logics of non-deterministic quasiary predicates.

The rest of the paper is structured as follows. In Section 2 we
define first-order algebras of quasiary predicates. In Sections 3 we
define logics of quasiary predicates. Section 4 is devoted to semantic
properties of such logics. In Section 5 the main consequence relations
are specified and their properties are studied. In Section 6 conclusions
are formulated.

2 First-order algebras of quasiary predicates

Let V be a nonempty set of names. According to tradition, names
from V are also called variables. Let A be a set of basic values (A 6= ∅).
Given V and A, the class VA of nominative sets is defined as the class
of all partial mappings from V to A, thus, VA = V

p
−→ A. Informally

speaking, nominative sets represent states of variables.

Though nominative sets are defined as mappings, we follow math-
ematical traditions and also use set-like notation for these objects. In
particular, the notation d = [vi 7→ ai | i ∈ I] describes a nomina-
tive set d; the notation vi 7→ ai ∈n d means that d(vi) is defined and
its value is ai (d(vi) ↓= ai). The main operation for nominative sets

is a total unary parametric renomination r
v1,...,vn
x1,...,xn

: VA
t

−→ VA where

181

M. Nikitchenko, S. Shkilniak

v1, ..., vn, x1, ..., xn ∈ V , v1, ..., vn are distinct names, n ≥ 0 , which is
defined by the following formula:

r
v1,...,vn
x1,...,xn

(d) =
= [v 7→ a∈nd | v /∈ {v1, ..., vn}] ∪ [vi 7→ d(xi) | d(xi) ↓, i ∈ {1, ..., n}].

Intuitively, given d this operation yields a new nominative set changing
the values of v1, ..., vn to the values of x1, ..., xn respectively. We also
use simpler notation for this formula: rv̄x̄(d) = d∇v̄ 7→ d(x̄). Also note
that we treat a parameter v1,...,vn

x1,...,xn
as a total mapping from {v1, ..., vn}

into {x1, ..., xn} thus parameters obtained by pairs permutations are
identical.

Operation of deleting a component with a name v from a nominative
set d is denoted d|−v. Notation d =−v d′ means that d−v = d′−v. The
set of assigned names (variables) in d is defined by the formula

asn(d) = {v ∈ V | v 7→ a ∈n d for some a ∈ A}.

Let Bool = {F, T} be a set of Boolean values.

Let PrRV
A = VA

r
−→ Bool be the set of all non-deterministic (rela-

tional) predicates over VA. Such predicates are called non-deterministic

(relational) quasiary predicates. The term ’relational’ means that
graphs of such predicates are binary relations from VA × Bool. Note
that non-determinism in logic was intensively studied, see, for example,
[7].

We will also use set-theoretic notations for quasiary predicates.

Full image of d ∈ VA under p ∈ PrRV
A is defined by the formula

p([d]) = {b ∈ Bool | (d, b) ∈ p}.

For p ∈ PrRV
A the truth and falsity domains of p are respectively

T (p) = {d ∈ VA | (d, T) ∈ p} and F (p) = {d ∈ VA | (d, F) ∈ p}.

Arrows
t

−→ and
p

−→ specify total and partial operations respec-
tively.

Notations not defined in this paper are understood in a sense of [4].

Considering predicates from PrRV
A in set-theoretic style we can

speak about such operations as union ∪ and intersection ∩. The fol-
lowing statement is obvious.

Lemma 1. The set < PrRV
A ;∪,∩ > is a complete distributive lattice.

182

Semantic Properties of Logics of Quasiary Predicates

The greatest and the least elements of this lattice are denoted ⊤V
A

and ⊥V
A respectively. For these elements T (⊤V

A) = VA, F (⊤V
A) = VA,

T (⊥V
A) = ∅, F (⊥V

A) = ∅.
Operations over PrRV

A are called compositions. The set C(V) of
first-order compositions is {∨,¬, Rv̄

x̄,∃x}. Compositions have the fol-
lowing types:

∨ : PrRV
A × PrRV

A

t
−→ PrRV

A ; ¬, R
v1,...,vn
x1,...,xn

,∃x : PrRV
A

t
−→ PrRV

A

and are defined by the following formulas (p, q ∈ PrRV
A):

– T (p ∨ q) = T (p) ∪ T (q); F (p ∨ q) = F (p) ∩ F (q);

– T (¬p) = F (p); F (¬p) = T (p);

– T (Rv̄
x̄(p)) = {d ∈ VA | rv̄x̄(d) ∈ T (p)};

F (Rv̄
x̄(p)) = {d ∈ VA | rv̄x̄(d) ∈ F (p)};

– T (∃xp) = {d ∈ VA | d∇x 7→ a ∈ T (p) for some a ∈ A};

F (∃xp) = {d ∈ VA | d∇x 7→ a ∈ F (p) for all a ∈ A}.

Here d∇x 7→ a = [v 7→ c ∈n d | v 6= x] ∪ [x 7→ a]. Conventional
notation is d[v 7→ a].

Please note that definitions of compositions are similar to strong
Kleene’s connectives and quantifiers.

Also note that parametric compositions of existential quantification
and renomination can also represent classes of compositions. Thus,
notation ∃x can represent one composition, when x is fixed, or a class
{∃x | x ∈ V } of such compositions for various names.

A pair AQR(V,A) =< PrRV
A ;C(V) > is called a first-order algebra

of non-deterministic quasiary predicates.
It is not difficult to prove the following statement.

Lemma 2. Singleton sets {⊤V
A} and {⊥V

A} are sub-algebras of algebra

AQR(V,A).

Algebras AQR(V,A) (for various A) form a semantic base for the
constructed first-order pure quasiary predicate logic LQR (called also
quasiary logic). Let us now proceed with formal definitions.

183

M. Nikitchenko, S. Shkilniak

3 First-order pure quasiary logic

To define a logic we should define its semantic component, syntactic
component, and interpretational component [3, 4, 5]. Semantics of the
logic under consideration is specified by algebras of the type AQR(V,A)
(for various A), so, we proceed with syntactic component of the logic.

3.1 Syntactic component

A syntactic component specifies the language of LQR. Let Cs(V) be a
set of composition symbols that represent compositions in algebras de-
fined above – Cs(V) = {∨,¬, Rv̄

x̄,∃x}. For simplicity, we use the same
notation for symbols of compositions and compositions themselves.

Let Ps be a set of predicate symbols. A triple ΣQ = (V,Cs(V), Ps)
is a language signature. Given ΣQ , we inductively define the language
of LQR – the set of formulas Fr(ΣQ):

1) if P ∈ Ps, then P ∈ Fr(ΣQ); such formulas are called atomic;

2) if Φ, Ψ ∈ Fr(ΣQ), then (Φ ∨Ψ) ∈ Fr(ΣQ);

3) if Φ ∈ Fr(ΣQ), then (¬Φ) ∈ Fr(ΣQ);

4) if Φ ∈ Fr(ΣQ), v1, ..., vn, x1, ..., xn ∈ V , v1, ..., vn are distinct
names, n ≥ 0, then (Rv1,...,vn

x1,...,xn
(Φ)) ∈ Fr(ΣQ);

for such formulas notation R
v1,...,vn
x1,...,xn

Φ or Rv̄
x̄Φ can be also used;

5) if Φ ∈ Fr(ΣQ), x ∈ V , then (∃xΦ) ∈ Fr(ΣQ).

Extra brackets can be omitted using conventional rules of operation
priorities.

3.2 Interpretational component

Given ΣQ and nonempty set A we can define an algebra of quasiary
predicates AQR(V,A) =< PrRV

A ;C(V) >. Composition symbols have
fixed interpretation, but we additionally need interpretation IPs :

184

Semantic Properties of Logics of Quasiary Predicates

Ps
t

−→ PrRV
A of predicate symbols; obtained predicates are called

basic predicates. A tuple J = (ΣQ, A, IPs) is called an interpretation.

Formulas and interpretations in LQR are called LQR-formulas and
LQR-interpretations respectively. Usually the prefix LQR is omitted.
Given a formula Φ and an interpretation J we can speak of an inter-

pretation of Φ in J . It is denoted by ΦJ .

3.3 Extensions of LQR

The logic LQR being a rather powerful logic still is not expressive
enough to represent transformations required for proving its complete-
ness. Therefore we introduce its two extensions: LUR — a logic with

unessential variables, and LUR
ε — a logic with unessential variables

and a parametric total deterministic variable unassignment predicate

εz which checks if a variable z is unassigned in a given nominative set.

To define LUR we should specify its semantic, syntactic, and inter-
pretational components.

Let U be an infinite set of variables such that V ∩U = ∅ . Variables
from U are called unessential variables (analogs of fresh variables in
classical logic) that should not affect the formula meanings.

Algebras
AQR(V ∪ U,A) =< PrV ∪U

A ;C(V ∪ U) >
(for different A) form a semantic base for LUR.

A syntactic component is specified by the set of formulas Fr(ΣU)
where ΣU = (V ∪ U,Cs(V ∪ U), Ps) is the signature of LUR.

An interpretational component restricts the class of LUR-interpreta-
tions in such a way that interpretations of predicate symbols are neither
sensitive to the values of the component with an unessential variable
u in nominative sets, nor to presence of such components. Formally, a
variable u ∈ U is unessential in an interpretation of predicate symbols

IPs if IPs(P)([d]) = IPs(P)([d′]) for all P ∈ Ps, d, d′ ∈ V ∪UA such
that d =−u d′.

The following statement is obvious.

Lemma 3. LUR is a model-theoretic conservative extension of LQR.

185

M. Nikitchenko, S. Shkilniak

Note that given p ∈ PrRV ∪U
A and v ∈ V ∪ U we say that v is

unessential for p if p([d]) = p([d′]) for any d, d′ ∈ V ∪UA such that d =−u

d′.

The next logic LUR
ε is an extension of LUR by a null-ary parametric

composition (predicate) εz (z ∈ V ∪U) defined in interpretation J by
the following formulas:

T (εzJ) = {d ∈ VA | z /∈ asn(d)},
F (εzJ) = {d ∈ VA | z ∈ asn(d)}.

Thus, for this logic the set of compositions is equal to {∨,¬, Rv̄
x̄,∃x, εz}.

Note that in free logic [8] E!z corresponds to negation of εz.

Algebras of the form
ARE(V ∪ U,A) =< PrV ∪U

A ;∨,¬, Rv̄
x̄,∃x, εz >

(for different A) constitute a semantic base for LUR
ε .

A syntactic component is specified by the set of formulas Fr(ΣU
ε)

where ΣU
ε = (V ∪ U, {∨,¬, Rv̄

x̄,∃x, εz}, Ps) is the signature of LUR
ε .

An interpretational component of LUR
ε is defined in the same way

as for LUR.

By construction of LUR
ε we get the following statement.

Lemma 4. LUR
ε is a model-theoretic conservative extension of LUR.

Predicates εz specify cases when z is assigned or unassigned. This
property can be used for construction of sequent rules for quantifiers.

For a formula Φ and a set of formulas Γ let nm(Φ) denote all
names (variables) that occur in Φ, nm(Γ) denote all names that oc-
cur in formulas of Γ. Names from U\nm(Φ) are called fresh unessen-
tial variables for Φ and their set is denoted fu(Φ), in the same way
fu(Γ) = U\nm(Γ) is the set of fresh unessential variables for Γ. We
also use natural extensions of this notation for a case of several formulas
and sets of formulas like nm(Γ,∆, Rū

v̄ (∃xΦ)) and fu(Γ,∆, Rū
v̄ (∃xΦ)).

Such notation is also used when we consider properties of predicate
algebras. We write x ∈ v̄ to denote that x is a variable from v̄. We
write {v̄, x̄} to denote the set of variables that occur in the sequences
v̄ and x̄.

186

Semantic Properties of Logics of Quasiary Predicates

4 Semantic properties of quasiary logics

The set of compositions {∨,¬, Rv̄
x̄,∃x, εz} of quasiary logics specifies

four types of properties related to propositional compositions ∨ and ¬,
to renomination composition Rv̄

x̄, to unassignment composition (pred-
icate) εz, and to existential quantifier ∃x.

4.1 Properties related to propositional compositions

Properties of propositional compositions are traditional. We formulate
here only one property of double negation

¬¬: ¬¬p = p.

4.2 Properties related to renomination composition

Renomination composition is a new composition specific for logics of
quasiary predicates. Its properties are not well-known therefore we
describe them in more detail. The main attention will be paid to dis-
tributivity properties.

Preliminarily we define composition Rv̄
x̄◦

w̄
ȳ which is the result of two

successive renominations in the following way:

Rv1,...,vn,w1,...,wm

x1,...,xn,y1,...,ym
◦v1,...,vn,u1,...,uk

s1,...,sn,z1,...,zk
(p) =

= Rv1,...,vn,w1,...,wm

x1,...,xn,y1,...,ym
(Rv1,...,vn,u1,...,uk

s1,...,sn,z1,...,zk
(p)) =

= R
v1,...,vn,w1,...,wm,u1,...,uk

α1,...,αn,y1,...,ym,β1,...,βk

(p),

where wi 6= uj (i = 1, ...,m; j = 1, ..., k),

αi = si(v1, ..., vn, w1, ..., wm/x1, ..., xn, y1, ..., ym),

βj = zj(v1, ..., vn, w1, ..., wm/x1, ..., xn, y1, ..., ym)

Here
r(b1..., bq/c1, ..., cq) = r if r /∈ {b1, ..., bq},

r(b1, ..., bq/c1, ..., cq) = ci if r = bi for some i.

In the sequel we adopt the following convention: a, b denote el-
ements from A; x, y, z, v, w (maybe with indexes) denote variables
(names) from V ∪U ; d, d′, d1, d2 denote nominative sets from V ∪UA; p, q

187

M. Nikitchenko, S. Shkilniak

denote predicates from ARE(V ∪ U,A); Φ,Ψ,Ξ denote LUR
ε -formulas,

Γ,∆ denote sets of LUR
ε -formulas, J denotes LUR

ε -interpretation.

Lemma 5. For every algebra ARE(V ∪U , A) the following properties

related to renomination composition hold:

R∨: Rv̄
x̄(p ∨ q) = Rv̄

x̄(p) ∨Rv̄
x̄(q);

R¬: Rv̄
x̄(¬p) = ¬Rv̄

x̄(p);

RI: R
z,v̄
z,x̄(p) = Rv̄

x̄(p);

RU: R
y,v̄
z,x̄(p) = Rv̄

x̄(p), z is unessential for Rv̄
x̄(p);

RR: Rv̄
x̄(R

w̄
ȳ (p)) = Rv̄

x̄ ◦
w̄
ȳ (p);

R: R(p) = p;

R∃1: Rv̄
x̄(∃yp) = ∃y(Rv̄

x̄(p)), y /∈ {v̄, x̄};

R∃2: ∃yp = ∃zR
y
z(p), z is unessential for p;

R∃3: R
y,v̄
z,x̄(∃yp) = Rv̄

x̄(∃yp);

R∃4: Rv̄
x̄(∃yp) = ∃zRv̄

x̄(R
y
z(p)), z is unessential for Rv̄

x̄(∃yp).

Proof. We prove the lemma by showing that truth and falsity domains
for predicates in the left- and right-hand sides of equalities coincide.
Let us consider properties R∃1, R∃2, and R∃4 only.

For R∃1 we have:

d ∈ T (Rv̄
x̄(∃yp)) ⇔ rv̄x̄(d) ∈ T (∃yp) ⇔ rv̄x̄(d)∇y 7→ a ∈ T (p) for

some a ∈ A ⇔ (since y /∈ {v̄, x̄}) rv̄x̄(d∇y 7→ a) ∈ T (p) for some a ∈ A

⇔ d∇y 7→ a ∈ T (Rv̄
x̄(p)) for some a ∈ A ⇔ d ∈ T (∃y(Rv̄

x̄(p)));

d ∈ F (Rv̄
x̄(∃yp)) ⇔ rv̄x̄(d) ∈ F (∃yp) ⇔ rv̄x̄(d)∇y 7→ a ∈ F (p) for

all a ∈ A ⇔ (since y /∈ {v̄, x̄}) rv̄x̄(d∇y 7→ a) ∈ F (p) for all a ∈ A

⇔ d∇y 7→ a ∈ F (Rv̄
x̄(p)) for all a ∈ A ⇔ d ∈ F (∃y(Rv̄

x̄(p))).

For R∃2 we have:

d ∈ T (∃z(Ry
z(p))) ⇔ d∇z 7→ a ∈ T (Ry

z(p)) for some a ∈ A ⇔

r
y
z (d∇z 7→ a) ∈ T (p) for some a ∈ A ⇔ (d∇z 7→ a)∇y 7→ a ∈ T (p) for
some a ∈ A ⇔ (since z is unessential for p) d∇y 7→ a ∈ T (p) for some
a ∈ A ⇔ d ∈ T (∃yp).

In the same way we demonstrate coincidence of the falsity domains
for R∃2.

By R∃1 and R∃2 we obtain R∃4.

188

Semantic Properties of Logics of Quasiary Predicates

4.3 Properties related to unassignment composition

Here we formulate only that null-ary unassignment composition (pred-
icate) is total deterministic predicate, i.e.

T (εy) ∪ F (εy) = VA and T (εy) ∩ F (εy) = ∅.

4.4 Properties related to quantifier composition

The following lemma describes some properties of quantifiers.

Lemma 6. For every algebra ARE(V ∪ U,A) the following properties

related to quantifiers hold (x 6= y):

T∃R: T (Rx
y(p)) ∩ F (εy) ⊆ T (∃xp);

T∃L: T (∃xp)|−y ⊆ (T (Rx
y(p)) ∩ F (εy))|−y if y is unessential for p.

Proof. For the first property let d ∈ T (Rx
y(p)) ∩ F (εy), then 1) there

exist a ∈ A such that y 7→ a ∈n d and 2) d∇x 7→ a ∈ T (p). Therefore
d ∈ T (∃xp). Thus, T∃R holds.

For the second property let d ∈ T (∃xp)|−y. It means that there
exists d′ ∈ V ∪UA and a ∈ A such that d′∇x 7→ a ∈ T (p) and d′ =−y d.
Since y is not essential for p, then (d′∇x 7→ a)∇y 7→ a ∈ T (p). By
definition, we get that d′∇y 7→ a ∈ T (Rx

y(p)) ∩ F (εy). But d = d′|−y.
This proves T∃L.

Now we can formulate semantic properties for quantifiers.

Lemma 7. For every algebra ARE(V ∪ U,A) the following properties

related to quantifiers hold (x 6= y):

∃eL: T (∃xp) =−y (T (Rx
y(p)) ∩ F (εy)) if y is unessential for p;

∃eR: T (∃xp) ∪ T (εy) = T (Rx
y(p)) ∪ T (∃xp) ∪ T (εy).

Proof. The first property follows by T∃R and T∃L. For the second
property, inclusion T (∃xp) ∪ T (εy) ⊆ T (Rx

y(p)) ∪ T (∃xp) ∪ T (εy) is
obvious. Inclusion T (∃xp)∪T (εy) ⊇ T (Rx

y(p))∪T (∃xp)∪T (εy) follows
by T∃R which can be presented as T (Rx

y(p)) ⊆ T (εy)∪T (∃xp). To get
such presentation we use the following property of Boolean algebra of

189

M. Nikitchenko, S. Shkilniak

sets: S1 ∩ S2 ⊆ S3 ⇔ S1 ⊆ S2 ∪ S3 where S2 denotes supplement of S2

and the properties that T (εy) = F (εy) and F (εy) = T (εy).

5 Consequence relations for sets of formulas

We consider two consequence relations: conventional logical conse-
quence and special T-consequence.

Let Γ ⊆ Fr(ΣU
ε) and ∆ ⊆ Fr(ΣU

ε) be sets of formulas. ∆
is a consequence of Γ in an interpretation J (denoted ΓJ |= ∆), if
⋂

Φ∈Γ

T (ΦJ) ∩
⋂

Ψ∈∆

F (ΨJ) = ∅.

∆ is a logical consequence of Γ (denoted Γ |= ∆), if ΓJ |= ∆ in
every interpretation J . The introduced relation of logical consequence
specifies irrefutability.

For the class of non-deterministic predicates the logical consequence
relation collapses, i.e. it is empty. Indeed, for any Γ and ∆ we have
that ΓJ 6|= ∆ if we interpret predicate symbols as non-deterministic
predicate ⊤V

A (Lemma 2).
Therefore we introduce another consequence relation which arises

naturally in Computer Science [9].
∆ is a T-consequence of Γ in an interpretation J (denoted by ΓJ |=T

∆), if
⋂

Φ∈Γ

T (ΦJ) ⊆
⋃

Ψ∈∆

T (ΨJ). ∆ is a T -consequence of Γ (denoted

by Γ |=T ∆), if ΓJ |=T ∆ in every interpretation J .
We will also use the following notation: T∧(ΓJ) =

⋂

Φ∈Γ

T (ΦJ) and

T∨(ΓJ) =
⋃

Φ∈Γ

T (ΦJ).

Now we describe the main properties of T -consequence relation.
First, let us give the following definitions for arbitrary consequence

relation |=∗ [10]:

– |=∗ is called paraconsistent if there exist Γ, Φ, and Ψ such that
Γ,Φ ∧ ¬Φ 6|=∗ Ψ;

– |=∗ is called paracomplete if there exist Γ, Φ, and Ψ such that
Γ,Φ 6|=∗ Ψ ∨ ¬Ψ;

190

Semantic Properties of Logics of Quasiary Predicates

– |=∗ is called paranormal if there exist Γ, Φ, and Ψ such that
Γ,Φ ∧ ¬Φ 6|=∗ Ψ ∨ ¬Ψ.

Lemma 8. T -consequence relation is paraconsistent, paracomplete,

and paranormal.

Proof. We demonstrate only paranormality of T -consequence relation.
Indeed, let Γ = ∅, Φ be P1 ∈ Ps, Ψ be P2 ∈ Ps such that P1 6= P2.
Then it is easy to check that interpreting P1 as predicate ⊤V

A and P2

as predicate ⊥V
A we get that P1 ∧ ¬P1 6|=T P2 ∨ ¬P2.

In a similar way we can demonstrate that the following statement
holds.

Lemma 9. There exist Γ, ∆, Φ, and Ψ such that

– Γ,¬Φ |=T ∆ and Γ 6|=T Φ,∆;

– Γ,Φ |=T ∆ and Γ 6|=T ¬Φ,∆;

– Γ |=T ¬Φ,∆ and Γ,Φ 6|=T ∆;

– Γ |=T Φ,∆ and Γ,¬Φ 6|=T ∆.

This lemma states that rules of sequent calculi permitting moving
(negated) formulas from one side of a sequent to its another side are
not valid for T -consequence relations. Consequently, sequent calculi
for |=T will be more complicated.

Still, such transformations are possible for a formula interpreted as
total deterministic predicate (see Lemma 11 (4)).

Lemma 10. Let Φ be a formula, Γ,Γ′,∆,∆′ be sets of formulas. Then

(M) if Γ ⊆ Γ′ and ∆ ⊆ ∆′, then Γ |=T ∆ ⇒ Γ′ |=T ∆′;

(C) Φ,Γ |=T ∆,Φ.

Proof of the lemma follows immediately from definitions.
Now we continue with those properties of T -consequence relation

which induce sequent rules for the logic under consideration. Such
properties are constructed upon semantic properties of compositions.
To do this the following lemma is often used.

191

M. Nikitchenko, S. Shkilniak

Lemma 11. Let Φ, Ψ, and Ξ be formulas, Γ and ∆ be sets of formulas,

J be LUR
ε -interpretation. Then

(1) if T (ΦJ) = T (ΨJ), then
Φ,Γ J|=T ∆ ⇔ Ψ,Γ J|=T ∆ and Γ J|=T Φ,∆ ⇔ Γ J|=T Ψ,∆;

(2) if T (ΦJ) = T (ΨJ) ∩ T (ΞJ), then
Φ,Γ J|=T ∆ ⇔ Ψ,Ξ,Γ J|=T ∆,

Γ J|=T Φ,∆ ⇔ (Γ J|=T Ψ,∆ and Γ J|=T Ξ,∆);

(3) if T (ΦJ) = T (ΨJ) ∪ T (ΞJ), then
Γ J|=T Φ,∆ ⇔ Γ J|=T Ψ,Ξ,∆,

Φ,Γ J|=T ∆ ⇔ (Ψ,Γ J|=T ∆ and Ξ,Γ J|=T ∆);

(4) if T (ΦJ) ∪ F (ΦJ) =
VA and T (ΦJ) ∩ F (ΦJ) = ∅, then

Φ,Γ J|=T ∆ ⇔ Γ J|=T ¬Φ,∆ and ¬Φ,Γ J|=T ∆ ⇔ Γ J|=T Φ,∆;

Γ |=T ∆ ⇔ (Φ,Γ |=T ∆ and Γ |=T ∆,Φ);

(5) if y ∈ fu(Γ,∆), then Γ J|=T ∆ ⇔ Γ J|=T ∆, εy;

(6) if T (ΦJ) =−y T (ΨJ) for y ∈ fu(Ψ,Γ,∆), then
Φ,Γ J|=T ∆ ⇔ Ψ,Γ J|=T ∆.

Proof. Property (1) is obvious. For (2) we have
Φ,Γ J|=T ∆ ⇔ T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔
⇔ T (ΨJ) ∩ T (ΞJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ Ψ,Ξ,Γ J|=T ∆.

In the same way the second part of (2) and property (3) are proved.
Let us consider (4). We have
Φ,Γ J|=T ∆ ⇔ T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔
⇔ T∧(ΓJ) ⊆ T (ΦJ) ∪ T∨(∆J) ⇔ T∧(ΓJ) ⊆ T (¬ΦJ) ∪ T∨(∆J) ⇔
⇔ Γ J|=T ¬Φ,∆.

In the same way other properties of (4) are proved.
Let us consider (5). By Lemma 10(M) we have that

Γ J |=T ∆ ⇒ Γ J |=T ∆, εy. We need to prove that Γ J |=T ∆, εy ⇒

Γ J|=T ∆. It is equivalent to
T∧(ΓJ) ⊆ T∨(∆J) ∪ T (εy) ⇔ T∧(ΓJ) ∩ F (εy) ⊆ T∨(∆J).

Let d ∈ T∧(ΓJ) ∩ F (εy). Since y is unessential for Γ it means that
d|−y ∈ T∧(ΓJ). From this follows that d|−y ∈ T∨(∆J). Since y is

192

Semantic Properties of Logics of Quasiary Predicates

unessential for ∆ it means that d ∈ T∨(∆J). Thus, T
∧(ΓJ) ⊆ T∨(∆J)

that proves the property under consideration.

Let us consider (6). We should prove that
T (ΦJ) ∩ T∧(ΓJ) ⊆ T∨(∆J) ⇔ T (ΨJ) ∩ T∧(ΓJ) ⊆ T∨(∆J).

Let d ∈ T (ΨJ) ∩ T∧(ΓJ). Since T (ΦJ) =−y T (ΨJ) there exists
d′ ∈ T (ΦJ) such that d′ =−y d. Since y is unessential for Γ we have
that d′ ∈ T∧(ΓJ). Hence d′ ∈ T∨(∆J). Again, y is also unessential for
∆ therefore d ∈ T∨(∆J). This proves the direct implication.

Let us prove the inverse implication. First, we prove that T (ΦJ) ⊆
T (ΨJ). Indeed, let d ∈ T (ΦJ). Since T (ΦJ) =−y T (ΨJ) there exists
d′ ∈ T (ΨJ) such that d′ =−y d. Since y is unessential for Ψ, d ∈ T (ΨJ).
Thus, T (Φ) ⊆ T (Ψ).

From this follows that Ψ,Γ J|=T ∆ ⇒ Φ,Γ J|=T ∆.

This completes the proof of (6).

Theorem 1. The following properties hold for T -consequence relation.

– Properties related to propositional compositions:

¬¬L) ¬¬Φ,Γ |=T ∆ ⇔ Φ,Γ |=T ∆.

¬¬R) Γ |=T ∆,¬¬Φ ⇔ Γ |=T ∆,Φ.

∨L) Φ ∨Ψ,Γ |=T ∆ ⇔ (Φ,Γ |=T ∆ and Ψ,Γ |=T ∆).

¬ ∨L) ¬(Φ ∨Ψ),Γ |=T ∆ ⇔ ¬Φ,¬Ψ,Γ |=T ∆.

∨R) Γ |=T ∆,Φ ∨Ψ ⇔ Γ |=T ∆,Φ,Ψ.

¬ ∨R) Γ |=T ∆,¬(Φ ∨Ψ) ⇔ (Γ |=T ∆,¬Φ and Γ |=T ∆,¬Ψ).

– Properties related to renomination compositions:

R ∨L) Rv̄
x̄(Φ ∨Ψ),Γ |=T ∆ ⇔ Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ),Γ |=T ∆.

¬R ∨L) ¬Rv̄
x̄(Φ ∨Ψ),Γ |=T ∆ ⇔ ¬(Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ)),Γ |=T ∆.

R ∨R) Γ |=T ∆, Rv̄
x̄(Φ ∨Ψ) ⇔ Γ |=T ∆, Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ).

¬R ∨R) Γ |=T ∆,¬Rv̄
x̄(Φ ∨Ψ) ⇔ Γ |=T ∆,¬(Rv̄

x̄(Φ) ∨Rv̄
x̄(Ψ)).

RL) R(Φ),Γ |=T ∆ ⇔ Φ,Γ |=T ∆.

193

M. Nikitchenko, S. Shkilniak

RR) Γ |=T ∆, R(Φ) ⇔ Φ,Γ |=T ∆,Φ.

RIL) R
z,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ Rv̄

x̄Φ),Γ |=T ∆.

¬RIL) ¬R
z,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ ¬Rv̄

x̄Φ),Γ |=T ∆.

RIR) Γ |=T ∆, R
z,v̄
z,x̄(Φ) ⇔ Γ |=T ∆, Rv̄

x̄Φ).

¬RIR) Γ |=T ∆,¬R
z,v̄
z,x̄(Φ) ⇔ Γ |=T ∆,¬Rv̄

x̄Φ).

RUL) R
y,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ Rv̄

x̄(Φ),Γ |=T ∆, if y ∈ fu(Φ).

¬RUL) ¬R
y,v̄
z,x̄(Φ),Γ |=T ∆ ⇔ ¬Rv̄

x̄(Φ),Γ |=T ∆, if y ∈ fu(Φ).

RUR) Γ |=T ∆, R
y,v̄
z,x̄(Φ) ⇔ Γ |=T ∆, Rv̄

x̄(Φ), if y ∈ fu(Φ).

¬RUR) Γ |=T ∆,¬R
y,v̄
z,x̄(Φ),⇔ Γ |=T ∆,¬Rv̄

x̄(Φ), if y ∈ fu(Φ).

RRL) R
v̄
x̄(R

w̄
ȳ (Φ)),Γ |=T ∆ ⇔ Rv̄

x̄ ◦
w̄
ȳ (Φ),Γ |=T ∆.

¬RRL) ¬R
v̄
x̄(R

w̄
ȳ (Φ)),Γ |=T ∆ ⇔ ¬Rv̄

x̄ ◦
w̄
ȳ (Φ),Γ |=T ∆.

RRR) Γ |=T ∆, Rv̄
x̄(R

w̄
ȳ (Φ)) ⇔ Γ |=T ∆, Rv̄

x̄ ◦
w̄
ȳ (Φ).

¬RRR) Γ |=T ∆,¬Rv̄
x̄(R

w̄
ȳ (Φ)) ⇔ Γ |=T ∆,¬Rv̄

x̄ ◦
w̄
ȳ (Φ).

R¬L) R
v̄
x̄(¬Φ)),Γ |=T ∆ ⇔ ¬Rv̄

x̄(Φ),Γ |=T ∆.

¬R¬L) ¬R
v̄
x̄(¬Φ)),Γ |=T ∆ ⇔ ¬¬Rv̄

x̄(Φ),Γ |=T ∆.

R¬R) Γ |=T ∆, Rv̄
x̄(¬Φ)) ⇔ Γ |=T ∆,¬Rv̄

x̄(Φ).

¬R¬R) Γ |=T ∆,¬Rv̄
x̄(¬Φ)) ⇔ Γ |=T ∆,¬¬Rv̄

x̄(Φ).

R∃RL) R
ū,x
v̄,y (∃xΦ),Γ |=T ∆ ⇔ Rū

v̄ (∃xΦ),Γ |=T ∆, if x /∈ ū.

¬R∃RL) ¬R
ū,x
v̄,y (∃xΦ),Γ |=T ∆ ⇔ ¬Rū

v̄ (∃xΦ),Γ |=T ∆, if x /∈ ū.

R∃RR) Γ |=T ∆, R
ū,x
v̄,y (∃xΦ) ⇔ Γ |=T ∆, Rū

v̄ (∃xΦ), if x /∈ ū.

¬R∃RR) Γ |=T ∆,¬R
ū,x
v̄,y (∃xΦ) ⇔ Γ |=T ∆,¬Rū

v̄ (∃xΦ), if x /∈ ū.

R∃L) R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ∃yRv̄

x̄(Φ),Γ |=T ∆, if y /∈ {v̄, x̄}.

¬R∃L) ¬R
v̄
x̄(∃yΦ),Γ |=T ∆ ⇔ ∃y¬Rv̄

x̄(Φ),Γ |=T ∆, if y /∈ {v̄, x̄}.

R∃R) Γ |=T ∆, Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,∃yRv̄

x̄(Φ), if y /∈ {v̄, x̄}.

¬R∃R) Γ |=T ∆,¬Rv̄
x̄(∃yΦ) ⇔ Γ |=T ∆,∃y¬Rv̄

x̄(Φ), if y /∈ {v̄, x̄}.

194

Semantic Properties of Logics of Quasiary Predicates

R∃∃L) R
v̄
x̄(∃yΦ)),Γ |=T ∆ ⇔ ∃zRv̄

x̄ ◦
y
z (Φ),Γ |=T ∆,

if z ∈ fu(Rv̄
x̄(∃yΦ)).

¬R∃∃L) ¬R
v̄
x̄(∃yΦ)),Γ |=T ∆ ⇔ ¬∃zRv̄

x̄ ◦
y
z (Φ),Γ |=T ∆,

if z ∈ fu(Rv̄
x̄(∃yΦ)).

R∃∃R) Γ |=T ∆, Rv̄
x̄(∃yΦ)) ⇔ Γ |=T ∆,∃zRv̄

x̄ ◦
y
z (Φ),

if z ∈ fu(Rv̄
x̄(∃yΦ)).

¬R∃∃R) Γ |=T ∆,¬Rv̄
x̄(∃yΦ)) ⇔ Γ |=T ∆,¬∃zRv̄

x̄ ◦
y
z (Φ),

if z ∈ fu(Rv̄
x̄(∃yΦ)).

– Properties related to unassignment predicates:

εLR) Γ |=T ∆ ⇔ εy,Γ |=T ∆ and Γ |=T ∆, εy.

εR) Γ |=T ∆ ⇔ Γ |=T ∆, εz, if z ∈ fu(Γ,∆).

– Properties related to quantifiers:

∃ReL) R
ū
v̄ (∃xΦ),Γ |=T ∆ ⇔ R

ū,x
v̄,z (Φ),Γ |=T ∆, εz,

if z ∈ fu(Γ,∆, Rū
v̄ (∃xΦ)).

¬∃ReL) ¬R
ū
v̄ (∃xΦ),Γ |=T ∆, εy ⇔

⇔ ¬Rū
v̄ (∃xΦ),¬R

ū,x
v̄,y (Φ),Γ |=T ∆, εy.

∃ReR) Γ |=T ∆, Rū
v̄ (∃xΦ), εy ⇔ Γ |=T ∆, Rū

v̄ (∃xΦ), R
ū,x
v̄,y (Φ), εy.

¬∃ReR) Γ |=T ∆,¬Rū
v̄ (∃xΦ),⇔ Γ |=T ∆,¬R

ū,x
v̄,z (Φ), εz,

if z ∈ fu(Γ,∆, Rū
v̄ (∃xΦ)).

Proof. Proof of the formulated properties is based on semantic proper-
ties of compositions and properties of T -consequence relation. For ex-
ample, ∃ReL) and ¬∃ReR) are consequences of Lemmas 7(∃eL), 11(6);
¬∃ReL) and ∃ReR) are consequences of Lemmas 7(∃eR), 11(6).

6 Conclusion

In the paper we have investigated a special kind of program-oriented
algebras and logics defined for classes of non-deterministic quasiary
predicates. We have presented semantic properties related to proposi-
tional compositions, renomination, and quantifier compositions. These

195

M. Nikitchenko, S. Shkilniak

properties form a basis for construction of sequent calculi for logics of
non-deterministic quasiary predicates. We plan to present such calculi
and prove their completeness in forthcoming papers.

References

[1] Handbook of Logic in Computer Science, S. Abramsky, Dov M.
Gabbay, and T. S. E. Maibaum (eds.), in 5 volumes, Oxford Univ.
Press, Oxford, 1993-2001.

[2] Handbook of Philosophical Logic, D.M. Gabbay, F. Guenthner
(eds.), 2nd Edition, in 17 volumes, Springer, 2001–2011.

[3] M. Nikitchenko, S. Shkilniak. Mathematical logic and theory of

algorithms, Publishing house of Taras Shevchenko National Uni-
versity of Kyiv, Kyiv, 2008, 528 p. (In Ukrainian)

[4] M. Nikitchenko, S. Shkilniak. Applied Logic, Publishing house of
Taras Shevchenko National University of Kyiv, Kyiv, 2013, 278 p.
(in Ukrainian).

[5] M. Nikitchenko, V. Tymofieiev. Satisfiability in composition-

nominative logics, Central European Journal of Computer Science,
vol. 2, no. 3, 2012, pp. 194–213.

[6] N. Nikitchenko. A Composition Nominative Approach to Program

Semantics, Technical Report IT-TR 1998-020, Technical Univer-
sity of Denmark, 1998.

[7] A. Avron, A. Zamansky. Non-deterministic semantics for logical

systems, in Handbook of Philosophical Logic, D.M. Gabbay, F.
Guenthner (eds.), 2nd ed., vol. 16, Springer Netherlands, 2011,
pp. 227–304.

[8] E. Bencivenga. Free Logics, in Handbook of Philosophical Logic, D.
Gabbay and F. Guenthner (eds.), vol. III: Alternatives to Classical
Logic, Dordrecht: D. Reidel, 1986, pp. 373–426.

196

Semantic Properties of Logics of Quasiary Predicates

[9] A. Kryvolap, M. Nikitchenko, W. Schreiner. Extending Floyd-

Hoare logic for partial pre- and postconditions, CCIS, 412, 2013,
Springer, Heidelberg, pp. 355-378.

[10] J.-Y. Béziau. What is paraconsistent logic?, in D. Batens, C.
Mortensen, G. Priest, J.P. Van Bendegem (Eds.), Frontiers of
Paraconsistent Logic, Proceedings of the 1st World Congress on
Paraconsistency, held in Ghent, Belgium, July 29–August 3, 1997,
Research Studies Press, Baldock, UK, 2000, pp. 95–111.

Mykola Nikitchenko, Stepan Shkilniak, Received July 19, 2015

Mykola Nikitchenko

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590519

E–mail: nikitchenko@unicyb.kiev.ua

Stepan Shkilniak

Taras Shevchenko National University of Kyiv

01601, Kyiv, Volodymyrska st, 60

Phone: +38044 2590519

E–mail: sssh@unicyb.kiev.ua

197

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Modal Logics of Partial Predicates without

Monotonicity Restriction

Oksana Shkilniak

Abstract

Modal logics recently have found many applications in var-
ious fields, including theoretical and applied computer science,
philosophy and linguistics ([1,2]). Traditional modal logics are
usually based on classical predicate logic. However, classical
logic has some fundamental restrictions which don’t allow tak-
ing into account sufficiently incompleteness, partiality and uncer-
tainty of information. Composition-nominative logics of partial
quasiary predicates (see [3,4]) is a program-oriented logical for-
malism based on wide classes of partial mappings over nominative
data. Composition-nominative modal logics (CNML) combine
facilities of traditional modal logics and composition-nominative
logics. Their important variant, modal transitional logics (MTL),
can adequately represent the fact of changing and evolution in
subject domains. Traditional modal logics (alethic, temporal,
deontic etc) can be easily considered within a scope of MTL. In
this paper we introduce pure first-order MTL of partial quasiary
predicates without monotonicity restriction. We define languages
and semantic models of pure first-order MTL of non-monotone
predicates and investigate their semantic properties, including
properties of logical consequence relations for sets of formulas,
specified with states. We distinguish various classes of MTL:
multimodal, temporal, epistemic and general MTL. Significant
difference between MTL of monotone and non-monotone predi-
cates is demonstrated. Properties of logical consequence relations
for sets of formulas, specified with states, are considered. Basing
on these properties, corresponding sequent calculi can be con-
structed.

Keywords: Modal logic, partial predicate, non-monotone
predicate, logical consequence.

c©2015 by O. Shkilniak

198

Modal Logics of Partial Predicates without Monotonicity Restriction

1 Composition Nominative Modal Systems

Composition nominative modal system (CNMS) is the main semantic
notion in composition nominative modal logic (CNML). Such systems
describe possible worlds of modal logic and are their models.

We specify CNMS as an object M = (Cms,Fm, Im), where

– Cms is a composition modal system (CMS), which defines seman-
tic aspects of the world;

– Fm is a set of formulas of the modal language;

– Im is an interpretation mapping of formulas on states of the uni-
verse.

CMS are relational semantic models: Cms = (S,R, Pr,C), where
S is a set of states of the universe, R is a set of relations on states
ρ ⊆ S × Sn, Pr is a set of predicates over state data, C is a set of
compositions on predicates.

Let us refine the description of CNMS for pure first-order CNML.
We define S as a set of algebraic structures α = (Aα, P rα), where Aα

is a set of basic data of state α, Prα is a set of quasiary predicates
VAα → {T, F} (predicates of state α). A =

⋃

α∈S

Aα is a set of basic

data of the world. Let us call predicates of the type VA → {T, F}

global.

For better understanding it will be useful to give some basic no-

tions [4]. Quasiary predicate is a predicate over nominative sets (sets
of pairs ”data–value”). V -nominative set on A (V -NS) is an arbitrary
single-valued function δ : V → A. We consider V as a set of names
(variables) and A as a set of values (basic data).

V -NS can be presented as [v1 7→ a1, . . . , vn 7→ an, . . .], where vi ∈V ,
ai ∈ A and vi 6= vj when i 6= j. Set of all V -NS on A will be denoted
as VA.

Let us define function asn : VA → 2V as

asn(d) = {v ∈ V | v 7→ a ∈ d for some a ∈ A}.

199

O. Shkilniak

We specify operation ||−x of deletion of the component with name
x for V -NS: d||−x = {v 7→ a ∈ d | v 6= x}.

Operation ∇ is defined as follows:

d1∇d2 = d2 ∪ {v 7→ d1 | v /∈ asn(d2)}.

The definition of operation of renomination r
v1,...,vn
x1,...,xn

:VA → VA:

r
v1,...,vn
x1,...,xn

(d) = d∇[v1 7→ d(x1), . . . , vn 7→ d(xn)].

We can shorten y1, . . . , yn to ȳ, so instead of rv1,...,vnx1,...,xn
we can write r

v̄
x̄.

Consecutive application of two operations of renomination r
v̄
x̄ and r

ū
ȳ

can be presented as a convolution of renominations rv̄x̄ � r
ū
ȳ (see [4]).

V -quasiary predicate on A [4] is an arbitrary (partial) function of
the type VA → {T, F}, where T and F are truth values true and
false.

Let us call the name x ∈ V unessential for a quasiary predicate P

if for arbitrary d1, d2 ∈
VA we have

d1||−x = d2||−x ⇒ P (d1) = P (d2).

Quasiary predicate P we call monotone (equitone) if for arbitrary
d1, d2 ∈VA conditions P (d1)↓ and d1 ⊆ d2 imply P (d2)↓= P (d1).

Any predicate P : VA → {T, F} is uniquely determined by its truth
and falsity domains:

T (P) = {d ∈VA | P (d) = T} and F (P) = {d ∈VA | P (d) = F}.

A predicate P : VA → {T, F} we call irrefutable, or partially true,
if F (P) = ∅.

Special variable definedness predicates εz are used for description
of properties of CNML of non-monotone predicates. The predicate εz

explicitly indicates whether a variable z ∈ V is defined (has a value).
Such predicates εz are specified as follows:

T (εz) = {d ∈VA | z /∈ asn(d)}; F (εz) = {d ∈VA | z ∈ asn(d)}.

Predicates εz are non-monotone. Each x ∈ V such that x 6= z is
unessential for εz.

200

Modal Logics of Partial Predicates without Monotonicity Restriction

The set C for pure first-order CNMS is denoted by basic logical
compositions ¬,∨,Rv̄

x̄,∃x and basic modal compositions. Logical com-
positions →,&,↔ and ∀x are derivative [4].

The compositions ¬ and ∨ we understand as strong Kleene negation
and disjunction and define them by truth and falsity domains of the
corresponding predicates:

T (¬P) = F (P), F (¬P) = T (P);

T (P ∨Q) = T (P) ∪ T (Q), F (P ∨Q) = F (P) ∩ F (Q).

Also we specify an unary renomination composition Rv̄
x̄:

Rv̄
x̄(f)(d) = f(rv̄x̄(d)).

Language of pure first-order CNMS. Alphabet of a language
includes a set of basic subject names (variables) V , a set Ps of predi-
cate symbols (signature of the language), symbols of basic compositions
¬,∨, Rv̄

x̄,∃x, and a set of basic modal compositions Ms (modal signa-
ture).

The set Fm of formulas of the language is defined inductively:

FA) Ps ⊆ Fm; every predicate symbol p ∈ Ps is an atomic formula;

FP) Φ,Ψ ∈ Fm ⇒ ¬Φ,∨ΦΨ ∈ Fm;

FR) Φ ∈ Fm ⇒ Rv̄
x̄Φ ∈ Fm;

F∃) Φ ∈ Fm ⇒ ∃xΦ ∈ Fm;

FM) Φ ∈ Fm and z ∈ Ms ⇒ zΦ ∈ Fm.

We will call formulas modalised if they contain symbols from Ms.
For each p ∈ Ps, the set of its synthetically nonsignificant sub-

ject names is defined by a total mapping ν : Ps → 2V , continued to
formulas [4]: ν : Fm → 2V . Also we have ν(zΦ) = ν(Φ).

The type of CNMS is specified by its modal signature Ms, simi-
larity of relations in R for each z ∈ Ms, and signature of synthetic
nonsignificance σ = (Ps, ν).

201

O. Shkilniak

Let us define an interpretation mapping of atomic formulas on states
of the world Im : Ps × S → Pr. The condition Im(p, α) ∈ Prα must
hold: basic predicates are predicates of states.

We continue the interpretation Im to formulas Im : Fm×S → Pr

as follows:

IA) Im(p, α) = Im(p, α) for each p ∈ Ps;

IP) Im(¬Φ, α) = ¬(Im(Φ, α));
Im(∨ΦΨ, α) = ∨(Im(Φ, α), Im(Ψ, α));

IR) Im(Rv̄
x̄Φ, α) = Rv̄

x̄Φ(Im(Φ, α));

I∃) Im(∃xΦ, α)(d)=

T , if Im(Φ,α)(d∇x 7→a)=T for some a∈Aα,

F , if Im(Φ,α)(d∇x 7→a)=F for all a∈Aα,

else undefined.

IM) Im(zΦ, α)(d) is specified by values Im(Φ, δ)(d) for certain states
δ, such that α and δ are in some corresponding with z relations
from R and may vary in form depending on the class of CNML.

Predicates which are the values of non-modalised formulas (they
contain no modal symbols) are predicates of states.

Predicate Im(Φ, α), which is the value of a formula Φ on a state α,
we denote by Φα.

A formula Φ is true on state α (denoted as α |= Φ), if Φα is partially
true (irrefutable) predicate.

Φ is true for the CNMS M (denoted as M |= Φ), if Φα is partially
true for each α ∈ S.

A formula Φ is everywhere (partially) true, or irrefutable (denoted
as |= Φ), if M |= Φ holds for every CNMS of the same type.

2 Transitional modal systems

Transitional modal system (TMS) is a CNMS with a set R consisting
of relations of the type R ⊆ S × S (i.e. transition relations).

202

Modal Logics of Partial Predicates without Monotonicity Restriction

Let us call a TMS general, if R = {⊲} (there is a unique binary
transition relation ⊲) and it has one basic modal composition � (nec-
essarily).

Temporal transitional modal systems (TmMS): TMS with R = {⊲}

and basic modal compositions � ↑ (it will always be) and � ↓ (it was
always).

For multimodal transitional modal systems (MMS), we have a num-
ber of basic modalities Ki, i ∈ I with corresponding transition relations
⊲i ∈ R, therefore R = {⊲i | i ∈ I}. Each Ki works as �, with respect
to its own relation ⊲i, i ∈ I.

General TMS is actually a case of MMS.
Let us consider a language of pure first-order general TMS. Thus,

Ms = {�}. To specify the set Fm of its formulas, we have got defini-
tions FA, FP, FR, F∃, and must clarify FM:

F�) if Φ is a formula, then �Φ is also a formula.

While defining the interpretation Im for formulas �Φ, IM gets the
following form:

I�) for each α ∈ S and d ∈VA:

Im(�Φ, α)(d) =

T , if Im(Φ, δ)(d) = T for all δ ∈ S : α ⊲ δ,

F , if there is δ ∈ S : α ⊲ δ and Im(Φ, δ)(d) = F,

else undefined.

In the case of non-existence for a given α ∈ S such a β that α ⊲ β,
we presume Im(�Φ, α)(d)↑ (undefined value) for all d ∈VA.

Depending on restrictions on the relation ⊲, various variants of gen-
eral TMS can be defined. For example, let us consider reflexivity, tran-
sitivity, and symmetry. If ⊲ is reflexive, we add an R-prefix to the name
of the TMS, for transitivity we write T, and S means symmetry. Thus,
we can get the following systems:
R-TMS, T -TMS, S -TMS, RT -TMS, RS -TMS, TS -TMS, RTS -TMS.

It should be noted that R-TMS is similar to T -system, RS -TMS is
similar to B, RT -TMS to S4, and RTS -TMS to S5.

203

O. Shkilniak

Now let us specify a language of pure first-order temporal TMS.
We have Ms = {�↑ , �↓} and define FM as follows:

F�↑↓) if Φ is a formula, then �Φ↑ and �Φ↓ are also formulas.

The definition of IM for formulas of the types �Φ↑ and �Φ↓:

I�↑↓) for each α ∈ S and d ∈VA:

Im(�↑Φ, α)(d) =

T , if Im(Φ, δ)(d) = T for all δ ∈ S : α ⊲ δ,

F , if there is δ ∈ S : α ⊲ δ and Im(Φ, δ)(d) = F,

else undefined.

Im(�↓Φ, α)(d) =

T , if Im(Φ, δ)(d) = T for all δ ∈ S : δ ⊲ α,

F , if there is δ ∈ S : δ ⊲ α and Im(Φ, δ)(d) = F,

else undefined.

In the case of non-existence for a given α ∈ S such a β that α ⊲ β,
we presume Im(�↑Φ, α)(d)↑ (undefined value) for all d ∈VA.

In the case of non-existence for a given α ∈ S such a β that β ⊲ α,
we presume Im(�↓Φ, α)(d)↑ (undefined value) for all d ∈VA.

Depending on restrictions on the relation ⊲, various variants of tem-
poral TMS can be defined. Let us consider reflexivity, transitivity, and
symmetry, thus, we can get the following systems:
R-TmMS, T -TmMS, S -TmMS, RT -TmMS, RS -TmMS, TS -TmMS,
and RTS -TmMS.

Finally, let us specify a language of pure first-order multimodal

TMS. We have Ms = {Ki | i ∈ I} and need to define FM:

FK) if Φ is a formula and Ki ∈ Ms then KiΦ is also a formula.

The definition of IM for formulas of the types KiΦ:

IK) for each α ∈ S and d ∈VA:

Im(KiΦ, α)(d) =

T , if Im(Φ, δ)(d) = T for all δ ∈ S : α ⊲i δ,

F , if there is δ ∈ S : α ⊲i δ and Im(Φ, δ)(d) = F,

else undefined.

204

Modal Logics of Partial Predicates without Monotonicity Restriction

In the case of non-existence for a given α ∈ S such a β that α ⊲i β,
we presume Im(KiΦ, α)(d)↑ (undefined value) for all d ∈VA.

Let us call a MMS epictemic (EMS) if the set R = {⊲i} is finite.
We can obtain the following variants of epictemic MMS:

R-EMS, T -EMS, S -EMS, RT -EMS, RS -EMS, TS -EMS, RTS -EMS.
Traditional epistemic systems can be considered within the scope

of EMS. For instance, R-EMS, T -EMS and RTS -EMS are the gener-
alisations of T(n), S4(n) and S5(n) correspondingly.

At the same time, there can exist MMS of mixed types when, for
example, ⊲1 is transitive, ⊲2 is transitive and reflexive, ⊲3 is symmetric
etc.

3 Properties of transitional modal systems

For TML of non-monotone quasiary predicates (the equitone (mono-
tone) case was studied in [4-7]) we distinguish global predicates
and predicates of states. Predicates which are the values of non-
modalised formulas are predicates of states; they are specified as fol-
lows: Φδ(d) = Φδ(dδ) for an arbitrary d ∈VA, where dδ is a nominative
set [v 7→ a ∈ d | a ∈ Aδ]. Informally, it means that predicates of states
”perceive” only such components v 7→ a that a ∈ Aδ. Global predicates
are the values of modalised formulas.

Modal compositions of TMS can be carried over renominations:

Theorem 1. Rv̄
x̄zΦ(d)=zRv̄

x̄Φ(d) for arbitrary z∈Ms, Φ, d∈VA.

Proof is similar to the equitone (monotone) case of TML (see [5]).

Corollary 1. Formulas of the type Rv̄
x̄zΦ(d)↔zRv̄

x̄Φ(d) are every-

where true (z∈Ms).

Let us consider the interaction between modal compositions and
quantifiers in TMS.

In the case of TML of non-monotone (non-equitone) predicates,
formulas of the types z∀xΦ→∀xzΦ and ∃xzΦ→z∃xΦ are not true.

Example 1. Formulas � ∀xΦ→∀x�Φ and ∃x�Φ→� ∃xΦ are

not true.

205

O. Shkilniak

Proof. Let us specify a general TMS in which the formula �∀xΦ →

∀x�Φ is refuted. Assume S={α, β}, R={α ⊲ β}, Aα={a}, Aβ={b}.
Let us take p ∈ Ps for which all the names are unessential but x. Let
pα(∅) = F , pβ(∅) = F , pβ([x 7→ b]) = T . Then (∀x p)β(∅) = T

and (�∀x p)α(∅) = T . From [x 7→ a]β = ∅ we have pβ([x 7→ a]β) =
pβ(∅) = F and (�p)α([x 7→ a]) = F . Then (∀x�p)α(∅) = F . Thus
(�∀x p→∀x�p)α(∅) = F and α 6|= �∀x p→∀x�p. Notice that the
predicate pβ is non-equitone.
A general TMS in which ∃x�Φ→�∃xΦ is refuted can be specified by
analogy.

At the same time, formulas of the types z∀xΦ → ∀xzΦ and
∃xzΦ → z∃xΦ are everywhere true in the case of TML of equitone
predicates ([7]).

However, formulas of the types ∀xzΦ→z∀xΦ and z∃xΦ→∃xzΦ
are not true ([5]) already in the equitone case of TML. In particular,
the formulas ∀x�Φ→�∀xΦ and �∃xΦ→∃x�Φ are not true.

∀x�Φ → �∀xΦ is known as the Barcan formula, and �∀xΦ →

∀x�Φ is the converse Barcan formula. As we showed in Example 1,
the converse Barcan formula is not true, but this formula is true for
every general TMS of equitone predicates.

4 Logical consequence for sets of formulas,

specified with states

Let us denote a formula specified with a state as Φα. Here Φ is a
formula of a language, α ∈ S (S is a set of names of states of the
universe) – its specification; the specification indicates a state in which
Φ is considered.

Let M is TMS with a set of states S, Γ is a set of formulas, specified
with states such that the states compose a set S.

A set Γ is agreed with TMS M , if an injection S to S is specified.
Let Γ and ∆ are sets of formulas, specified with states.

∆ is a consequence of Γ in the agreed with them CNMS M (denoted
ΓM |= ∆), if for all d ∈ VA: Φα(d) = T for all Φα ∈ Γ implies the

206

Modal Logics of Partial Predicates without Monotonicity Restriction

impossibility that Ψβ(d) = F for all Ψβ∈ ∆.
∆ is a logical consequence of Γ (denoted Γ |= ∆) if ΓM |= ∆ holds

for all CNMS M of the same type. Thus, Γ 6|= ∆ ⇔ there is a CNMS
M agreed with Γ and ∆, and d ∈VA such that Φα(d) = T for all Φα∈ Γ
and Ψβ(d) = F for all Ψβ∈ ∆.

Let us consider properties of a consequence relation for sets of for-
mulas, specified with states in the given CNMS.

The non-modal properties are identical to the corresponding prop-
erties for logics of quasiary predicates (see [3,4]). As an example let us
list basic properties of propositional level and of quantifier elimination.

C) If Γ∩∆ 6= ∅ then ΓM |= ∆. This property guarantees an existence
of the consequence;

¬L) ¬Φα,ΓM |= ∆ ⇔ ΓM |= ∆,Φα;

¬R) ΓM |= ∆,¬Φα ⇔ Φα,ΓM |= ∆;

∨L) ∨ΦΨα,ΓM |= ∆ ⇔ Φα,ΓM |= ∆ and Ψα,ΓM |= ∆;

∨R) ΓM |= ∆,∨ΦΨα ⇔ ΓM |= ∆,Φα,Ψα.

Basic properties of quantifier elimination:

∃L) ∃xΦα,ΓM |= ∆ ⇔ Rx
zΦ

α,ΓM |= ∆, εzα, here z ∈ VT and
z /∈ nm(Γ,∆,∃xΦ);

∃vR) ΓM |= ∆,∃xΦα, εyα ⇔ ΓM |= ∆,∃xΦα,Rx
yΦ

α, εyα.

When eliminating quantifiers we use the following properties (here
VT denotes a set of globally unessential names [4]):

εd) ΓM |= ∆ ⇔ εyα,ΓM |= ∆ and ΓM |= ∆, εyα;

εv) Γ |= ∆ ⇔ Γ |= ∆, εzα, where z ∈ VT and z /∈ nm(Γ,∆).

Now let us consider properties concerned with modalities in the
case of general TMS.

Carring modalities over renominations:

207

O. Shkilniak

R�L) Γ,Rv̄
x̄�Φα

M |= ∆ ⇔ Γ,�Rv̄
x̄Φ

α
M |= ∆;

R�R) ΓM |= ∆,Rv̄
x̄�Φα ⇔ ΓM |= ∆,�Rv̄

x̄Φ
α.

Elimination of modalities:

�L) �Φα,ΓM |= ∆ ⇔ {Φβ |α ⊲ β} ∪ ΓM |= ∆;

�R) ΓM |= ∆,�Φα ⇔ ΓM |= ∆,Φβ for all β ∈ S such that α ⊲ β.

The properties of consequence for sets of formulas, specified with
states, in the given CNMS induce the corresponding properties of logical
consequence for sets of the such formulas. The latter properties can be
the semantic base for construction of sequent calculi for various classes
of TML.

The property C gives us the closure condition of a sequent; closed
sequents are axioms of sequent calculi. All the other properties can be
transformed into sequent forms – the inference rules of sequent calculi.

In sequent calculi, derivations have a form of a tree with sequents
as nodes. Sequent tree is closed, if all its leafs are closed sequents.
A sequent Σ is derivable, or has a derivation, if there exists a closed
sequent tree with a root Σ; such tree is called a derivation of a sequent
Σ.

By building a sequent tree we are in fact checking the absence of a
logical consequence. Hence, the sequent forms must preserve 6|= during
the decomposition of a formula, and |= during the composition of a
formula from components. So properties of M 6|=, dual to the ones of

M |=, have to be considered.

We specify dual properties for ∨L and �R as follows:

L∨) ∨ΦΨα,ΓM 6|= ∆ ⇔ Φα,ΓM 6|= ∆ or Ψα,ΓM 6|= ∆;

R�) ΓM 6|= ∆,�Φα ⇔ ΓM 6|= ∆,Φβ for some β ∈ S such that α ⊲ β.

As P ⇔ Q is equivalent to ¬P ⇔ ¬Q, the rest of the properties for

M 6|= can be obtained simply by replacing M |= by M 6|=, like here:

L�) �Φα,ΓM 6|= ∆ ⇔ {Φβ |α ⊲ β} ∪ ΓM 6|= ∆.

208

Modal Logics of Partial Predicates without Monotonicity Restriction

Additional conditions imposed on transition relations modify prop-
erties of modalities elimination. Let us consider the dual properties of
elimination of modalities for general TMS and a reflexive, transitive
and symmetric ⊲ (all possible combinations).

1. ⊲ is reflexive: α ⊲ α, so for L� we have Φα ∈ {Φβ |α ⊲ β}. The
property R� is the same as in general case.

2. ⊲ is symmetric: α ⊲ β ⇔ β ⊲ α, so L� and R� have forms

L�S) �Φα,ΓM 6|= ∆ ⇔ {Φβ |α ⊲ β or β ⊲ α} ∪ ΓM 6|= ∆;

R�S) ΓM 6|= ∆,�Φα ⇔ ΓM 6|= ∆,Φβ for some β ∈ S such that α ⊲ β or
β ⊲ α.

3. ⊲ is reflexive and symmetric. We have R�S and

L�RS) �Φα,ΓM 6|= ∆ ⇔ {Φβ |α ⊲ β or β ⊲ α} ∪ ΓM 6|= ∆
and Φα ∈ {Φβ |α ⊲ β or β ⊲ α}.

4. ⊲ is transitive. We have R� and

L�T) �Φα,ΓM 6|= ∆ ⇔ {Φβ |α ⊲ β} ∪ {�Φβ |α ⊲ β} ∪ ΓM 6|= ∆. Note
that {�Φβ |α ⊲ β} is needed because ⊲ is transitive.

5. ⊲ is transitive and reflexive. We have R� and L�T. Because of
reflexivity, we need Φα ∈ {Φβ |α ⊲ β} for L�T.

6. ⊲ is transitive and symmetric. We have R�S and

L�TS) �Φα,ΓM 6|=∆⇔{Φβ|α⊲β or β⊲α}∪{�Φβ|α⊲β or β⊲α}∪ΓM 6|=∆.

7. ⊲ is transitive, reflexive and symmetric. We have R�S and L�TS.
We need Φα ∈ {Φβ |α ⊲ β or β ⊲ α} for L�TS because of reflexivity.

Basing on the considered properties of logical consequence relation
for sets of formulas, specified with states, the corresponding sequent
calculi for various classes of TML can be constructed.

209

O. Shkilniak

5 Conclusion

In this paper program-oriented logical formalisms with modalities were
studied. We introduced pure first-order transitional modal logics of
partial predicates without monotonicity (equitonicity) restriction. For
such logics, the languages and semantic models were defined and their
semantic properties were considered; the difference between MTL of
monotone and non-monotone predicates was demonstrated, as an ex-
ample, the converse Barcan formula is not valid in the case of non-
monotone predicates, however, this formula is valid in the case of mono-
tone predicates [5]. We investigated properties of logical consequence
relations for sets of formulas, specified with states, for various classes
of logics, which can be the base for sequent calculi construction in the
future.

References

[1] S. Abramsky, D. Gabbay, T.S.E. Maibaum. Handbook of Logic in

Computer Science: in 5 vol. Clarendon Press, Oxford, 1994-2000.

[2] D. Bjørner, M.C. Henson. Logics of Specification Languages.

Springer, Heidelberg, 2008.

[3] M. Nikitchenko, S. Shkilniak. Semantic Properties and Sequent Cal-

culi of Pure First-order Composition Nominative Logics. Informa-
tion Theories and Applications, vol. 20, no 4, pp. 379–390, Sofia,
Bulgaria, 2013. (in Russian)

[4] M. Nikitchenko, S. Shkilniak. Applied Logic. Publishing house of
Taras Shevchenko National University of Kyiv, Kyiv, 2013. (in
Ukrainian)

[5] O. Shkilniak. Semantic Properties of Composition Nominative

Modal Logics. Problems in Programming, no 4, 2009, pp. 11–23.
(in Ukrainian)

210

Modal Logics of Partial Predicates without Monotonicity Restriction

[6] O. Shkilniak. Semantic Models and Sequent Calculi of Transitional

Modal Logics. Computer Mathematics, no 1, 2013, pp. 141–150. (in
Ukrainian)

[7] O. Shkilniak. Modal Logics of Partial Predicates and Sequent Sys-

tems of Logical Reasoning in Them. Information Theories and Ap-
plications, vol. 20, no 4, pp. 367–378, Sofia, Bulgaria, 2013. (in
Russian)

Oksana Shkilniak Received July 12, 2015

Taras Shevchenko National University of Kyiv,

Faculty of Cybernetics, Department of Information Systems

64/13, Volodymyrska Street, City of Kyiv, Ukraine, 01601

Phone: +380442590511

E–mail: me.oksana@gmail.com

211

Part 6

Formal languages

and automata

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Communicative automata based programming.

Society Framework∗

Andrei Micu, Adrian Iftene

Abstract

One of the aims of this paper is to present a new program-
ming paradigm based on the new paradigms intensively used in
IT industry. Implementation of these techniques can improve the
quality of code through modularization, not only in terms of en-
tities used by a program, but also in terms of states in which they
pass. Another aspect followed in this paper takes into account
that in the development of software applications, the transition
from the design to the source code is a very expensive step in
terms of effort and time spent. Diagrams can hide very impor-
tant details for simplicity of understanding, which can lead to
incorrect or incomplete implementations. To improve this pro-
cess communicative automaton based programming comes with
an intermediate step. We will see how it goes after creating mod-
eling diagrams to communicative automata and then to writing
code for each of them. We show how the transition from one step
to another is much easier and intuitive.

Keywords: Communicative Automata, XML Automata,
Automata transfer, Distributed systems, Traveling code.

1 Introduction

The last decades of evolution for computing machines brought a sig-
nificant increase in computing power and their diversity. The rise of
parallel computing, the important foundations of modern computers,
has revolutionized the world of software and hardware making it pos-
sible to create artificial intelligent systems. Whether it is a desktop,

c©2015 by A. Micu, A. Iftene
∗ This work was supported by project 2 CHIST-ERA/01.10.2012

213

A. Micu, A. Iftene

mobile phone, mainframe, or any other computing system, it is able
to simultaneously perform a number of tasks that sometimes depend
on each other. Their synchronization is essential in most cases and it
depends on the states in which the processes or threads are at a time.
Synchronization is not easy to achieve if the source code is not struc-
tured in terms of states. Sometimes it happens that a seemingly stable
code in terms of errors to work as expected for successive runs with the
same input data, but at a certain running (with the same input data)
to give a wrong result.

Automata have been used since before the beginning of modern
computers to solve mathematical problems. Nowadays they have ap-
plications in many of the components of a software product such as lex-
ical analyzers, parsers which use regular expressions or network com-
munication protocols [1]. In 2003 Russian scientist Anatoly Shalyto
published an article about automata based programming [2]. This pa-
per presents a new way of programming mechanisms for simulation of
states, transitions and input/output operations. In designing of large
applications state charts and activity diagrams can be used, and they
are very similar to automata. The problem arises when you have to
translate these diagrams into source code. Shalyto senses this trans-
position and connects his theory with the association between diagram
elements and automata elements.

Communicative automata based programming has elements from
the object-oriented version of the Russian researcher and, additionally,
it solves the problems mentioned above. It proposes an improved model
of the application, dividing the tasks of the control automata in the
object-oriented model to several independent machines that communi-
cate with each other. Every communicative automata is self-contained
and do not share information, the only way to exchange data is the
transmission of messages. So the code of applications benefits from
high cohesion without sacrificing coupling and it can be reused easily.

The main strength in the technology based on communicative au-
tomata is that the application can be easily distributed across multiple
computing machines. Each system has its suite of communicative au-
tomata, which communicates with the rest of the automata by the

214

Communicative automata based programming. . .

same type of messages; in this case the communication channel is the
network. Moreover, these systems can switch automata between them,
which do not depend on a particular machine, providing task balanc-
ing. This is useful particularly in the client-server model, where the
client is a computing machine with low capacities, such as a mobile
phone. In this paper we will see how we created the premises for the
communicative automata based programming paradigm, which is based
on object-oriented programming concepts. This paradigm intensively
uses the concept of automaton; code structure is given by the states
and transitions. Novelty to classic automata based programming is to
treat automata as atomic elements at application-level and the intro-
duction of using transmission of messages between automata. Society
Framework implements the basic elements and concepts described by
communicative automata based programming. The framework allows
creation of native and XML automata, the XML ones having an impor-
tant advantage because they can be serialized locally and deserialized
on another machine at runtime.

2 Communicative automata based program-

ming

2.1 Automata based programming (classical version)

For the first time in software engineering, Shalyto describes an ap-
plication model composed only from automata. Its technology uses
intensive enumerations and switch-case instructions, so that is also
called ”Switch Technology” [2]. In this solution, although the code
is easy to understand, there are big problems when the number of
states increases. This is because the program code increases with each
added state and transition. The solution appears later in the paradigm
”object-oriented programming based on states” [2]. It combines the ad-
vantages of automata for easier understanding of the program behavior
and advantages of object-oriented programming for easier understand-
ing of the structure. The new technique shifts from ”switch-case” in-
structions to classes and objects to describe automata, thus avoiding

215

A. Micu, A. Iftene

nested switches. Shalyto takes in discussion the existence of several
automata in one application. Their management is difficult when you
have to synchronize certain transitions or when performing operations
of reading/writing from the same memory location. Therefore the no-
tion of ”space of states” [2] arises, a set of conditions designed to con-
trol objects. Knowing which states control objects, we can program
automata to have synchronous access to memory. Moreover, if we con-
sider one object for each automaton, the space of states may act as a
supervisor for the other automata. Thus, the application model begins
to look like client-server model, as in Figure 1.

Figure 1. Comparison between client-server model and Shalyto model

Another novelty in this technique is the capacity of system to re-
spond to events, a necessary feature for communication between state
space and the other automata. So, not only I/O operations can change
the state of automata, but also other automata by generating its own
events.

2.2 Communicative automata based programming

Programming based on interconnected automata expands object-
oriented programming, inheriting all its elements and rules. On top
of them there is the added notion of communicative automaton, with
new rules related to its functionality. The major differences between the
automata from object-oriented version and communicative automata

216

Communicative automata based programming. . .

are their atomic characteristic and the communication based on mes-
sages. In what follows, an automaton is a finite automaton with epsilon-
transitions, without isolated states, with one or more final states and
a single initial state [3].

Communicative automata bring new elements compared to the clas-
sical automata, leading to changing application architecture. The main
elements are: (1) State – a series of instructions viewed as an atomic
part. It contains code that performs the actual work of the automaton;
(2) Transition – a series of instructions viewed as an atomic part. In
contrast with states, transitions contain only the code needed to deter-
mine the next state where it will pass; (3) Message – an entity that
contains data transmitted by an automaton to another automaton or
by a code that is not part of an automaton; (4) List of messages – a
comprehensive list of received messages by automaton.

A communicative automaton may contain, in addition to the base
elements, other resources such as variables, operating system resources
or references/pointers to other automata. In most cases, when a sys-
tem runs more communicative automata, it is desirable to execute their
code in parallel. The general solution in modern systems is to run the
code for each automaton on a separate thread. Some programming lan-
guages such as JavaScript before HTML5 [4, 5], do not support working
with multiple threads. If the parallel execution is not possible, the pro-
grammer will have to use an own method of allocation and arbitration
of automata to the processor. This approach has an important advan-
tage in that the programmer can choose the convenient moments when
to deallocate an automaton to ensure a consistent state at each step
of the execution. This approach has a disadvantage, though. At any
point in execution it cannot run more than one automaton, so others
have to wait.

Each automaton must provide ways to add messages to it message
list. The problem occurs when an automaton should reference another
automaton, to which it must send a message. A naive way to solve this
problem is to keep a reference/pointer to every possible destination,
which is set by the function that creates it. Such practices, however,
are extremely hard to maintain since it requires changing the code

217

A. Micu, A. Iftene

of the function that instantiates automata each time when we add a
new type of automaton. A better approach is to mediate communica-
tion with an object that keeps track of automata. This object, called
”router”, has an implementation similar with the Observer pattern.
Automata must register using a unique identifier to this mediator and
must be able to handle messages from any source, automaton or not.
The router methods can send messages based on recipient identifier,
thus obtaining a total decoupling of automata in the system. When
the router handles messages sent through the network, security prob-
lems may appear which must be taken into account. A security system
must provide a separation between user automata to avoid situations
in which an automaton sends a compromising message to another au-
tomaton.

3 Society framework

3.1 Architecture

Society Framework is a project developed to demonstrate the advan-
tages of communicative automata based programming. Its source code
and examples are publicly available on https://code.google.com/p/soci-
ety-framework/. Its target is to facilitate the development of commu-
nicative automata based applications and to minimize the errors that
can happen in such an application. There are two framework implemen-
tations, one written in Java language and one written in C# language,
the reason being the demonstration of its interoperability.

The three major modules of this framework are the following: (1)
Base module for communicative automata – contains interfaces,
abstract classes and completely implemented classes to create a native
automaton; (2) XML communicative automata module – con-
tains interfaces, abstract classes and completely implemented classes
to create an XML automaton; (3) Communication module – con-
tains classes with role in automata communication, both locally and
through the network, on different applications.

In Society the communicative automata are divided in two large
categories: native automata, with Java or C# code based on the frame-

218

Communicative automata based programming. . .

work implementation and XML automata, for which the code is written
using an extension of XML. The main reason is the fact that, unlike the
native automata, the XML ones can be serialized, sent through the net-
work to another application and re-instantiated on that machine. The
XML code inside the serialization is transformed in one more object
trees representing the instruction that must be executed in the states
and the transitions. For this reason we cannot say that the framework
compiles the code and neither that it interprets it. It constructs its
own code using objects corresponding to the instructions described by
the XML.

XML automata can use only a restricted set of instructions, on
which the framework can construct XML specifications. The reason
is the fact that XML automata are not intended for complex or in-
tense processing due to the great overhead compared to the native
ones. Their utility is the fact that they can communicate with the na-
tive ones through messages, the latter fulfilling the tasks described in
the messages much more efficiently. The alternative usage of the two
types enables optimizing the application processing, an example being
described in Figure 2.

The efficiency relies on the fact that the only data sent between the
server and the client is the automaton serializations. Thus, the transfer
of data between server and client is minimized and it is replaced by
service calls, the result being a constant number of connections to the
server for executing a task. Fortunately an XML automaton plays the
role of manager for the native automata in the system and they don’t
require much code, so traveling to another machine through network
doesn’t imply a lot of data transfer. Another major advantage in this
approach is the reduced overhead of the native automata because, as
we previously mentioned, the native automata are written directly in
the language/platform of the framework implementation. The fact that
a native automaton can use any instruction of this type raises security
problems regarding the actions permitted to XML automata. XML
automata can only execute instructions that don’t compromise security,
the only way of communicating with the machine it runs on being the
message sending to other automata.

219

A. Micu, A. Iftene

Figure 2. Example of optimization using a native automaton and an
XML automaton

3.2 Base module for communicative automata

The base module contains the base class for all the automata created
in a system (BaseAutomaton) and classes for automaton components.
In both framework implementations these are: (1) State – the base
class for the states in an automaton; (2) Transition – the base class
for the transitions in an automaton; (3) TransitionGroup – class that
contains transitions and acts like a normal transition; (4) Message-

List – the class that implements the queue of messages received by an
automaton.

The MessageList class implements a special type of queue with syn-
chronized add and remove methods (see Figure 3). The add operation
is synchronized to ensure consistency to the list while more than one
execution threads add messages simultaneously. The remove opera-
tion is synchronized to block the thread that calls it when there are
no messages in the queue until another thread places a message in it.
The message queue is encapsulated in the automaton, the only permit-
ted operation being the message addition by using the Add method at
automaton.

220

Communicative automata based programming. . .

Figure 3. Interaction with the message list (queue)

Each state contains a transition or a transition group which indi-
cates the next state and is kept in an indexed list (HashMap in Java
and Dictionary in C#) with string identifiers. Society’s communicative
automata can run both on the current thread, by calling the run (or
Run in C#) method, and on a newly created thread by calling start
(or Start in C#).

Another important class in the base module is the SocietyManager
which manages the automata inventory from the current application
and the XML automata transfers. This can be extended to imple-
ment the saving and loading methods for the automata. For automata
transfer SocietyManager runs a special native automaton called Au-
tomataTransferAutomaton responsible with managing the connections
and sending/receiving automata.

3.3 XML communicative automata module

XML communicative automata are an extension of the native ones,
their base class being BaseAutomaton. The XML automaton name
is given by the serialization and deserialization of this type, which is
achieved by using the Society XML, an extension of XML.

221

A. Micu, A. Iftene

The serialization of XML automata contains 6 major elements: (1)
Automaton name – also named identifier, it is the character sequence
attribute of the < automaton > element with role in a possible sub-
scribe of the automaton at the message router; (2) Current state

name – current state identifier, also stored as a character sequence;
(3) Current message – the serialization of the last message pulled
from the message queue; (4) Message list – the serialization of the
automaton’s message queue; (5) Variables – the list of variables and
their values; (6) States – the list of states in the automaton and their
code.

The current state name must match the name of a state in the state
list. If this rule is violated then the automaton cannot start. Also, if
the name which was provided for the automaton serialization differs
from the name it had in the system before, when the automaton is re-
instantiated all entities which send messages to that automaton must
be aware of the change and send message for the new name.

Variables are key-value pairs. In the Society framework automata
work with 5 data types: Boolean, Integer, Double, String and Map.
Map type can represent vectors with any number of dimensions; the
only limit is the machine memory. To ensure this property, the frame-
work uses a series of indexed lists (the type of list depends by framework
implementation). Thanks to this flexibility we can create vectors that
contain other vectors, any number of times and in any combination,
the result being as much dimensions as the memory can hold.

The state serialization contains the state identifier (name at-
tribute), the executed code (< code > element) and the transition (<
transition > element) or the transition group (< transition group >

element). A transition group contains any number of transitions and
a < code > element which contains the instructions that manage the
returned values for each transition. From the moment when the au-
tomaton is started, the initial state code is executed indicated by the
value in the current state attribute. Then the transition code from
that state is executed (or the transition group code if it’s a group of
transitions) and the next state name is obtained. The process contin-
ues until the automaton is stopped, either from a state code, or from

222

Communicative automata based programming. . .

an execution thread outside it.

It should be noted the fact that inside a transition group each tran-
sition must have a name (specified in the name attribute), so that their
code can be called from the < code > element of the group. If a state
has just a transition, and not a transition group, then that transition
doesn’t have to specify a name. The instructions represent the impera-
tive part of Society XML and there are two types of them: (1) Simple

instructions – instructions that don’t contain other instructions inside
them (empty elements); (2) Compound instructions – instructions
that contain other instructions inside them (non-empty elements).

Simple instructions are the base for the code executed in the states
and transitions. These are represented by XML elements without
content, the only parameters being their attributes. The following
simple instructions can be used in Society XML: get next message,
send message, execute, continue, break and return. Compound in-
structions are usually loops (while, do − while, for), but they can
be other types, like the if − else instruction or the switch − case.
Their behavior is identical with the one in the framework’s implemen-
tation language, with small differences to enable much more flexibility
by using the expressions. The following compound instructions can be
used in Society XML: while, do while, for, if , else, switch, case and
default.

Unlike the other elements, where the declaring order does not drive
the code behavior, instructions must be written in the exact order in
which they must be executed. Regarding the calculability of Society
XML, it contains enough instructions to be Turing-complete: at least
one assignation operation, one conditional operation and one jump in-
struction. This means that XML communicative automata can solve
any problem which can be transformed in an algorithm. The input and
the output are ensured by the router and the message queue inside the
automaton. Native automata must provide communication methods
with the user for the XML ones because the language of the latter does
not allow native calls for reading, writing or displaying data. The ad-
vantage is the fact that XML automata don’t have any security issues
so long as the native ones verify and control the requests. The ex-

223

A. Micu, A. Iftene

pressions have an important role in Society XML because they provide
values for the attributes in the instructions presented earlier.

XML communicative automata deserialization

The BaseAutomaton class incorporates methods to serialize and de-
serialize automata. For parsing the XML data the Society framework
uses SAXParser in Java and XMLReader in C#. For constructing
the objects that compose the XML automaton functionality the frame-
work uses a special automaton called DeserializationAutomaton. For
each beginning and ending tag the parser sends a message to the de-
serialization automaton containing the corresponding data (tag name,
attributes, and tag type). According to the state and message data the
automaton will create the objects and perform transitions.

XML communicative automata serialization

XML automata serialization is a much simpler process thanks to the
tree structure of the instructions inside them. The serialization process
implies the construction of the XML based on the objects inside the
automaton. To achieve this it is necessary to inspect the variables, the
message list, the special members (automaton name, current message,
etc.) and a single BFS traversal of object trees in the states, transitions
and transition groups.

3.4 The communication module

The communication module includes the classes responsible with send-
ing and routing the messages: (1)Message – the class which represents
a message; (2) MessageRouter – the class responsible with message
transfers.

The Message class contains two fields (or properties in C#): from
and data. The from field holds the identifier with which the sender
automaton has subscribed to the router or any other name if the mes-
sage was not sent by an automaton. The data field is a reference to
the sent object and it can be of any type.

To send messages to an automaton outside the application the
router uses an automaton which is responsible with the message trans-
fer through the network called NetworkMessagingAutomaton. This

224

Communicative automata based programming. . .

looks similar to the DeserializationAutomaton inside the SocietyMan-
ager class, the only difference being the type of sent information.

4 Comparisons

4.1 Loose code vs. native communicative automata

Loose code means any object-oriented code written without the con-
straints of the communicative automaton based programming paradigm.
By applying these constraints to loose code the native communicative
automatons can be obtained, the performance difference being mini-
mal.

To create a native automaton the following steps must be followed:
(1) Extending the BaseAutomaton or Automaton classes – if
the automaton state doesn’t have to be persisted then the Automa-
ton class is used, otherwise the BaseAutomaton class is extended and
the serialization/deserialization methods are implemented; (2)Adding

the member variables – necessary for the automaton functionality;
(3) Creating the nested classes – corresponding to the states, tran-
sitions and transition groups; (4) Instantiating and adding the pre-

viously created classes at the current automaton – these steps
can be made in the automaton constructor.

The code executed in the stateCode and transitionCode methods by
the automaton is the imperative (procedural) code corresponding to the
language of the framework implementation. The run method (or Run
in C#), which was previously mentioned in this article, is responsible
with the correct execution of the automaton regarding the order in
which the states, the transitions and the transition groups are executed.
The management instructions in this method have O(1) complexity,
except the operation that searches a state in the state set. After a
transition returns an identifier, in the run method, a search for the
state corresponding to that identifier is attempted. This implies a get
operation in a HashMap (Java) or Dictionary (C#) with a complexity
in the worst case scenario of O(n) [7, 8], where n is the length of the
identifier hash. While the automata are designed, the programmers

225

A. Micu, A. Iftene

and architects must decide how to split the automaton tasks and what
are their states and transitions.

4.2 Native communicative automata vs. XML commu-

nicative automata

The XML communicative automata, as mentioned in the previous chap-
ters, are an extension of the native communicative automata. Their
states, transitions and transition groups are constructed in a certain
manner to ensure they can be serialized and deserialized using the Soci-
ety XML language. The code inside the XML automaton is composed
of an object tree and the objects are implementing the Instruction in-
terface. Executing its code means calling the code method of the root
object which will trigger directly or indirectly the call of code in the
other objects from the tree.

The overhead compared to the native ones is visibly greater because
each instruction implies a method call at the level of implementation.
Starting from the moment the automaton tries to assign a value to a
Map object at an inexistent level, the algorithm creates the necessary
levels based on the indexes from the left operand. If on one of the levels
that must be created there is an object of a type different from Map
then it is replaced by a new Map object.

In the native automata the variable access has O(1) complexity
thanks to the fact that they are direct members of the automaton class.
XML automata keep all the variables in an indexed list, the same way
the states are stored, therefore the access algorithm complexity is O(n),
where n is the length of the variable name hash [7, 8].

When comparing XML automata and native automata it can be
inferred that the native ones must be used for intense processing and
system calls and XML ones must be used for the business logic, control
and code that must be transferred between applications. This way
we can take advantage of both without sacrificing execution time or
code modularity. The connection between the two types of automata
is the messaging which ensures a uniform communication. Because
Society framework was written using just the base platform for each

226

Communicative automata based programming. . .

language it was implemented in, there are no additional dependencies
for it to run. An advantage of this decision is the ease of extending the
framework for the Android platform. In Android the Java code runs
on a special virtual machine called Dalvik [9]. To run the intermediary
Java code (Java byte-code) it is transformed into intermediary Dalvik
code (Dalvik byte-code) for optimizations [10].

5 Conclusions

Communicative automata based programming makes the process of
moving from the design to the implementation easier and the state or
the activity diagrams to be found directly in the source code, without
the need of a detailed documentation. The paradigm combines both
imperative programming elements and declarative elements for obtain-
ing a higher quality code with less effort. The new features it brings on
top of the classic automata based programming, automaton atomicity
and messaging communication, enforce practical rules with an aim for
minimizing the errors: code modularization, data encapsulation at au-
tomaton level and request verification. These advantages have a great
impact in production, especially in large projects where the work is
assigned to a great number of programmers and architects.

Society framework has reached its purpose: the demonstration of
the advantages brought by the communicative automata based pro-
gramming. The differentiation between native automata and XML
automata resulted in the development of two categories of automata,
each with its advantages and disadvantages.

The Society framework, though it is not the most efficient imple-
mentation of the mechanisms in the communicative automata based
programming, it draws closer to the industry needs. Large distributed
applications or the ones that intensively use network transfers can be
boosted by Society framework. Nonetheless, based on the applica-
tion necessities, different mechanisms can be implemented for the au-
tomata. The target would be code optimization, security (message
encryption, authentication, error tolerance, etc.) or the sending of
messages through other environments (embedded systems, Bluetooth).

227

A. Micu, A. Iftene

References

[1] E. Gribko. Applications of Deterministic Finite Automata. (2013).

[2] A. Shalyto. it Technology of Automata-Based Programming.
(2004).

[3] J. Hopcroft, R. Motwani, J. Ullman. Introduction to Automata

Theory, Languages, and Computation, Second Edition. Addison-
Wesley, (2000).

[4] J. Edwards. Multi-threading in JavaScript. (2012).

[5] R. Gravelle. Introducing HTML 5 Web Workers: Bringing Multi-

threading to JavaScript. (2012).

[6] S. Singhal. Infix to Prefix Conversion. Sharing ideas, Sharing ex-

periences. (2012).

[7] Arno. HashMap vs. TreeMap. (2010).

[8] K. Normark. Generic Dictionaries in C#. (2010).

[9] J. Hildenbrand. Android A to Z: What is Dalvik. (2012).

[10] Security Engineering Research Group, Institute of Management
SciencesPeshawar, Pakistan, Analysis of Dalvik Virtual Machine

and Class Path Library. November (2009).

Andrei Micu, Adrian Iftene, Received July 20, 2015

Andrei Micu, Adrian Iftene

Institution: ”Alexandru Ioan Cuza” University

Address: General Berthelot, No. 16

Phone: 004 - 0232 - 2011549

E–mail: andrei.micu@info.uaic.ro, adiftene@info.uaic.ro

228

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

On some trends in finite automata theory

Volodymyr V. Skobelev, Volodymyr G. Skobelev

Abstract

In this paper some results of research in two new trends of fi-
nite automata theory are presented. For understanding the value
and the aim of these researches some short retrospective analy-
sis of development of finite automata theory is given. The first
trend deals with families of finite automata defined via recurrence
relations on algebraic structures over finite rings. The problem
of design of some algorithm that simulates with some accuracy
any element of given family of automata is investigated. Some
general scheme for design of families of hash functions defined
by outputless automata is elaborated. Computational security of
these families of hash functions is analyzed. Automata defined
on varieties with some algebra are presented and their homomor-
phisms are characterized. Special case of these automata, namely
automata on elliptic curves, are investigated in detail. The sec-
ond trend deals with quantum automata. Languages accepted by
some basic models of quantum automata under supposition that
unitary operators associated with input alphabet commute each
with the others are characterized.

Keywords: finite automata, finite rings, varieties, simula-
tion, hash functions, elliptic curves, quantum automata.

1 Introduction

It is known that ’automaton’ is one of the basic notions of computer
science. Its significance was determined in the fundamental paper of
A.M. Turing [1] where it was used as some formal model for informal
notion of ’algorithm’ (i.e. either a digital transducer, or an acceptor
of a language). Foundations of finite automata (FA) theory were laid

c©2015 by V.V. Skobelev, V.G. Skobelev

229

V.V. Skobelev, V.G. Skobelev

in the middle of XX century [2]. In its essence any finite automaton is
some formal model for processes that can be implemented on computers
(due to restrictions on amount of memory).

Development of FA theory was motivated not only by its internal
problems, but also it was carried out in close interaction with other
areas of computer science. The last circumstance in many respects led
to numerous applications of FA models. On the other hand, research
of actual applied problems (including those in the area of information
technologies) and emergence of some new paradigms for notion of ’com-
putation’ led to significant reconsideration problems in FA theory. As
the result some entirely new sections of this theory began to appear.

In this paper we consider two of these sections. The first one deals
with FA defined via recurrence relations over finite ring. The necessity
of investigation of these models is substantially caused by the problems
of modern cryptography [3, 4]. The second section deals with quantum
FA, i.e. with some part of quantum algorithms theory which is devel-
oped intensively at present. Thus, quantum FA are based on the new
paradigm of computations called ’quantum computations’ [5, 6].

2 Survey of finite automata theory

The following two stages can be naturally highlighted in the develop-
ment of FA automata theory.

The first stage covers 50s–80s of the XX century.

Finite automaton considered as a transducer was defined as a sys-
tem M = (Q, X, Y, δ, λ) (Q, X and Y are respectively finite set of states,
finite input and finite output alphabets, δ : Q× X → Q is the transition
function and λ : Q × X → Y is the output function). Moore and Mealy
models of FA and some their variants associated with FA functioning
in time were determined. Problems of analysis and synthesis [7, 8, 9],
the problem of completeness [10, 11] and problems of theory of exper-
iments with FA [12] were investigated within these models. Analysis
of transformations of free semigroups carried out by FA [13] had a sig-
nificant influence on formation of algebraic theory of FA [14, 15] and
automata-algebraic approach to software engineering [16]. It should

230

On some trends . . .

also be noted investigation of information-lossless FA [17, 18] which
(possibly with some additional information) carry-out injective trans-
formations of input semigroup into output semigroup. Just these FA
demonstrate possibility for using of FA as some mathematical model
for stream ciphers.

Finite automaton considered as an acceptor was defined as a system
M = (Q, X, δ, qin, Qacc) (Q and X are respectively finite set of states and
finite input alphabet, δ : Q × X → Q is the transition function, qin ∈ Q

is the initial state and Qacc ⊆ Q is the set of accepting states). An
input string is accepted by M if it transforms the initial state into the
set of accepting states. The set of such input strings is the language
accepted by M. It was proved that for any fixed finite alphabet the
set of languages LDFA accepted by FA acceptors equals to the set of
regular languages (Kleene’s theorem). It should be noted that any FA
acceptor is some 1-way 1-head Turing Machine (TM) with input tape,
i.e. information is only read (1-way means that at every step the head
of TM moves one cell to the right).

Non-deterministic FA acceptors were investigated under supposi-
tion that any subset Qin ⊆ Q of initial states could be chosen and any
ternary relation δ ⊆ Q × ({Λ} ∪ X) × Q (Λ is the empty symbol) could
define admissible transitions. Accepted language was defined as a set of
strings that transform at least one initial state into the set of accepting
states. It was proved that the set of all languages accepted by these ac-
ceptors equals to the set LDFA. Although every non-deterministic FA
acceptor can be effectively transformed into equivalent deterministic
one, this transformation can lead to a significant increase in cardinal-
ity for the set of states (there are examples when non-deterministic FA
acceptor has n states while equivalent deterministic one has 2n states).
Possibly, just this factor has grounded application of non-deterministic
FA acceptors algebra [9] for formation of one of the main classes of
discrete event systems designed to automate industrial process control.

Nontrivial generalization of non-deterministic FA acceptors was the
emergence of probabilistic FA [19, 20]. In this model for each state
and each input the probability of transition in each state was de-
fined (thus, there is some deep inner link between probabilistic FA

231

V.V. Skobelev, V.G. Skobelev

and finite Markov chains [21]). Formally, probabilistic FA is a system
M = (Q, X, {Mx}x∈X, u0, Qacc), where Q = {q

1
, . . . , qn} is the set of states,

X is finite input alphabet, Mx (x ∈ X) is some stochastic n× n-matrix

of transitions, u0 = (α
(0)

1
, . . . , α

(0)
n)T (α

(0)

i ∈ R+ (i ∈ Nn),
n
∑

i=1

α
(0)

i = 1)

is the initial distribution of states, and Qacc ⊆ Q is the set of accepting
states. The evolution of M on input string x1 . . . xl (l ∈ Z+) is defined

by identity (α
(l)

1
, . . . , α

(l)
n)T = Mx

l
. . .Mx1

u0. This string is accepted

by M with probability PM(x1 . . . xl) =
∑

α
(l)

i , where the sum is over all
i such that qi ∈ Qacc. Moreover, M accepts the language L ⊆ X

+ with:
1) probability p (0.5 ≤ p ≤ 1) if it accepts every string w1 ∈ L with
probability not less than p, while any string w2 6∈ L is accepted with
probability not exceeding 1− p; 2) error (p1; p2) (0 ≤ p1 < p2 ≤ 1) if it
accepts every string w1 ∈ L with probability not less than p2, while any
string w2 6∈ L is accepted with probability not exceeding p1. It should
be noted that any probabilistic FA is some 1-way 1-head probabilistic
TM with input tape.

Progress in error-correcting codes development [22, 23] and linear
systems analysis [24] stimulated research of FA presented via recurrence
relations over finite fields [25].

The second stage in the development of FA theory started in 90s of
the XX century.

Development of models for cryptographic protection of information
had a great influence on FA theory. The following problems became
actual. Firstly, it is analysis of preimages of output strings produced
by FA [26]. Secondly, it is analysis of linear and polylinear recur-
rences over finite rings [27, 28]. These recurrences define some class
of autonomous automata intended for design of generators of pseudo-
random sequences used in modern ciphers. Thirdly, it is analysis of
experiments with linear and bilinear automata defined via recurrence
relations over finite fields [29]. Fourthly, it is investigation of complex-
ity of FA identification [30]. This problem is caused by application of
FA for analysis of computational security for stream ciphers [31, 32].
Fifthly, it is investigation of FA defined via algebraic recurrence rela-
tions over finite rings [33, 34]. If these FA are reversible, they can be

232

On some trends . . .

used as mathematical models for some stream ciphers.

The problems listed above show that formation of some new section
of algebraic theory of FA is carried out at present. Essentially new
factor for this section is the transition from transformations of free
semigroups to transformations of algebraic structures performed by FA
defined via recurrence relations over finite algebraic structures. These
research are presented in chapter 3.

Since 1997 a variety of quantum FA (QFA) models different in ca-
pacity have been investigated. All of them are acceptors and they are
defined in terms of 1-way k-head (k ≥ 1) quantum TM (QTM) with
input tape. Accepting of languages was analyzed both from the point
’with given probability’ and ’with given error’.

Basic QFA models with measurement of a state only at the last step
are listed below (X (|X| = m) is input alphabet and with every letter
x ∈ X some unitary operator Ux acting in n-dimensional complex space
C
n is associated).

The model MO-1QFA [35] is 1-way 1-head QTM M = (Q, X, |ϕ〉, Qacc),
where Q = Bn (Bn = {|i〉|i ∈ Nn}) is the set of basic states, the unit
vector |ϕ〉 ∈ C

n is the pure initial state and Qacc ⊆ Bn is the set of
accepting states. Probability that M accepts a string w = x1 . . . xl ∈ X

+

equals to P(|ϕ〉, w) =‖ PaccUw|ϕ〉‖
2, where Uw = Ux

l
. . . Ux1

and Pacc is
the projection operator on the subspace spanned by Qacc.

The model L-QFA [36] differs from the model MO-1QFA only that it
deals with some initial mixed state {(|ϕi〉, αi)}i∈Nn

such that |ϕi〉 ∈ C
n

(i ∈ Nn) are pair-wise different unit vectors, αi > 0 (i ∈ Nn), and
∑

i∈Nn

αi = 1 (αi (i ∈ Nn) is referred to as probability that at initial

instant QTM M exists in the state |ϕi〉).

Probability that L-QFA M accepts a string w ∈ X
+ equals to

P({(|ϕi〉, αi)}i∈Nn
, w) =

∑

i∈Nn

αiP(|ϕi〉, w).

The model kQFA [37] is 1-way k-head QTM M = (Q, T, |ϕ〉, Qacc) (at
any instant all heads move simultaneously by one cell to the right),

where T = X
k ∪

k−1
⋃

i=1

X
i{Λ}k−i. It is worth to note that similarly to

the case when the model L-QFA was defined as some generalization of

233

V.V. Skobelev, V.G. Skobelev

the model MO-1QFA, in [38] the model L-kQFA was defined as some
generalization of the model kQFA.

Currently, analysis of QFA models is focused on detailed study of
the set of accepted languages, as well as on resolving of the problem of
identification of equivalent states. Some research of languages accepted
by above listed models of QFA is presented in chapter 4.

3 Automata over algebraic structures

Let K = (K,+, ·) be fixed finite ring and M = {Ma}a∈A (A ⊆ K l) be
any family of FA

Ma :

{

qt+1 = f1(qt,xt+1,a)

yt+1 = f2(qt,xt+1,a)
(t ∈ Z+),

where f1 : Kn1+n2+l → Kn1 and f2 : Kn1+n2+l → Kn3 are fixed map-
pings, and a are parameters. It is known that via any experiment with
an automaton Ma the values of parameters a ∈ A not always can be
identified uniquely. So naturally arises the problem of design of some
algorithm that simulates any Ma ∈ M with some accuracy (from the
standpoint of cryptography this means ’an attack on the algorithm’).
This problem has been resolved in [39, 40]. The essence of proposed
solution is as follows.

We fix a set of parameters B ⊆ K l1 and three families of mappings

{ϕ
(1)

b
: Kn1+n2 → Kn3}b∈B, {ϕ

(2)

b
: Kn1×

r−1
⋃

j=1

(Kn3)j×Kn2 → Kn3}b∈B

and {ϕ
(3)

b
: Kn1+rn3+n2 → Kn3}b∈B. Let GB = {Gb}b∈B be the set

of mappings, such that Gb(q0,x1 . . . xm) = y1 . . .ym (b ∈ B,m ∈ N),
where

yi =

ϕ
(1)

b
(q0,x1), if i = 1

ϕ
(2)

b
(q0,y1 . . .yi−1,xi), if i = 2, . . . , r

ϕ
(3)

b
(q0,yi−r . . .yi−1,xi), if r < i ≤ m

.

Let Hb,q0
(x1 . . .xm) = Gb(q0,x1 . . . xm) (b ∈ B,q0 ∈ Kn1 ,m ∈ N).

It is evident that each family Hb = {Hb,q0
}q0∈K

n1 (b ∈ B) defines

234

On some trends . . .

some finite automaton over the ring K. Fixing surjection h : A → B

we associate some family Hh(a) with every automaton Ma ∈ M .

The ordered pair (GB, h) is defined as simulation model for the fam-
ily M. It is supposed that equalities Hh(a),q0

| r⋃

i=1

(Kn2)i
= Fa,q0

| r⋃

i=1

(Kn2)i

(a ∈ A,q0 ∈ Kn1) hold, where Fa,q0
: (Kn2)+ → (Kn3)+ is the map-

ping realized by initial automaton (Ma,q0). Semantics of these equal-
ities is that simulation model (GB, h), connected to the input and the
output channels of an automaton Ma (a ∈ A) passes the first r output
symbols, and then blocks the output channel of an automaton Ma and
simulates its behavior on the remaining tail of input string.

On the base of standard techniques of algorithms theory accuracy
of simulation model (GB, h) has been defined for all combinations of
notions ’in the worst case’ and ’in average’. Asymptotically exact sim-
ulation models have been extracted and some sufficient conditions for
existence of these models have been established in [39, 40].

It is evident that any hash function is some mapping of input semi-
group into the set of states realized by some finite initial automaton.
From the standpoint of cryptography analysis of hash functions fami-
lies defined by outputless FA over finite ring is actual. This problem
has been investigated in [41]. The main results are as follows.

Let Fk,m (k ≤ m) be the set of all mappings f : Kk+m → Kk, such
that the following two equalities |{x ∈ Km|f(q,x) = q

′′}| = |K|m−k

and {x ∈ Km|f(q,x) = q
′′} ∩ {x ∈ Km|f(q′,x) = q

′′} = ∅ hold for
all q,q′,q′′ ∈ Kk (q 6= q

′). It is evident that any mapping f ∈ Fk,m

defines strongly connected outputless automaton Mf, such that Kk is
the set of states and Km is input alphabet.

Let Hf,q0
be the mapping of input semigroup (Km)+ into the set

of states Kk realized by initial automaton (Mf,q0). Thus, automaton
Mf defines the family of hash functions {Hf,q0

}q0∈K
k .

The following theorems are true:

Theorem 1. [41]. For any mapping f ∈ Fk,m if q0 6= q
′
0
(q0,q

′
0
∈ Kk)

then Hf,q0
(u) 6= Hf,q′

0
(u) for any input string u ∈ (Km)+.

Corollary 1. [41]. For any f ∈ Fk,m if q0 6= q
′
0
(q0,q

′
0
∈ Kk) then

H−1

f,q0

(q) ∩H−1

f,q′

0

(q) = ∅ for any q ∈ Kk.

235

V.V. Skobelev, V.G. Skobelev

Theorem 2. [41]. For any mapping f ∈ Fk,m and q0 ∈ Kk equality

|H−1

f,q0

(qt) ∩ (Km)t| = |K|tm−k (qt ∈ Kk) holds for all t ∈ N.

Let p
(1)

f,q0,t
(q) be probability that input string u randomly selected

in the set (Km)t is some solution of the equation H(u) = q, and p
(2)

f,q0,t

be probability that for two different input strings u and u
′ randomly

selected in the set (Km)t equality H(u) = H(u′) holds.

The following theorems are true:

Theorem 3. [41]. For any mapping f ∈ Fk,m and q0,q ∈ Kk equality

p
(1)

f,q0,t
(q) = |K|−k holds for all t ∈ N.

Theorem 4. [41]. For any mapping f ∈ Fk,m and q0 ∈ Kk equality

p
(2)

f,q0,t
= |K|−k(1− |K|k−1

|K|mt−1
) holds for all t ∈ N.

Thus, the number |K|−k characterizes computing security for a fam-
ily of hash functions {Hf,q0

}q0∈K
k . This implies some feasibility for

using these families in resolving problems of information protection.

Applications of elliptic curves over finite fields for resolving prob-
lems of information transformation justify feasibility of research FA
defined on varieties (i.e. on the sets of solutions of systems of algebraic
equations) over finite ring. It allows to set internal connections between
modern algebraic geometry, systems theory, FA theory and cryptology.

From standpoint of algebraic FA theory and its applications it
is reasonable to deal with the set V1(K) of all varieties V ⊆ Kn

with some algebra (V,F1 ∪ F2), where F1 = {α0, α1, . . . , αk1} and
F2 = {β1, . . . , βk2} are the sets of unary and binary operations, corre-
spondingly. For any variety V ∈ V1(K) the algebra (V,F1 ∪ F2) gives
possibility to define the set A(1)(V) of Mealy FA

{

qt+1 = βj1(αi1(qt), αxt+1
(v1))

yt+1 = βj2(αi2(qt), αxt+1
(v2))

(t ∈ Z+)

and the set A(2)(V) of Moore FA

{

qt+1 = βj1(αi1(qt), αxt+1
(v1))

yt+1 = βj2(αi2(qt+1),v2)
(t ∈ Z+),

236

On some trends . . .

where v1,v2 ∈ V are fixed points, i1, i2 ∈ Zk1+1 and j1, j2 ∈ Nk2 are
fixed integers, q0 ∈ V, and xt+1 ∈ Zk1+1 (t ∈ Z+). Thus, for any
M ∈ A(1)(V) ∪A(2)(V) values of xt, qt and yt are, correspondingly, an
input symbol, a state and an output symbol at instant t.

Let V,U ∈ V1(K). We say that: 1) the variety U is a homo-

morphic image of the variety V, if the algebra (U,F
(2)

1
∪ F

(2)

2
) is a

homomorphic image of the algebra (V,F
(1)

1
∪F

(1)

2
); 2) varieties U and

V are isomorphic if algebras (U,F
(2)

1
∪ F

(2)

2
) and (V,F

(1)

1
∪ F

(1)

2
) are

isomorphic.
The next theorem is true:

Theorem 5. [42]. Let U,V ∈ V1(K). If U is a homomorphic image

of V, then there exist mappings Ψj : A(j)(V) → A(j)(U) (j = 1, 2),
such that homomorphic image of any automaton Mj ∈ A(j)(V) is the

automaton Ψj(Mj).
Corollary 2. [42]. Let U,V ∈ V1(K). If U and V are isomorphic

varieties, then there exist mappings Ψj : A
(j)(V) → A(j)(U) (j = 1, 2),

such that automata Mj ∈ A(j)(V) and Ψj(Mj) are isomorphic.
Any elliptic curve γ over a finite field K = (K,+, ·) defines the

abelian group (Gγ ,+γ), where Gγ is the set of all points of γ including
specified point O (this point serves as the neutral element of the group).
Setting F1 = {α0, α1, . . . , αk1} (1 ≤ k1 < |Gγ |), where α0(P) = O

(P ∈ Gγ) and αi(P) = P+γ . . .+γP
︸ ︷︷ ︸

i times

(P ∈ Gγ) for all i = 1, . . . , k1,

and F2 = {+γ}, we get some algebra (Gγ ,F1 ∪F2). Thus, any elliptic
curve γ defines some variety of above considered type.

For any P1, P2 ∈ Gγ\{O} and n,m ∈ Nk1 recurrence relations
{

qt+1 = nqt+γxtP1

yt+1 = mqt+γxtP2

(t ∈ Z+)

and
{

qt+1 = nqt+γxtP1

yt+1 = mqt+1

(t ∈ Z+),

where xt+1 ∈ Nk1 , define the familyM1,γ,k1 of Mealy FA and the family
M2,γ,k1 of Moore FA, correspondingly.

237

V.V. Skobelev, V.G. Skobelev

The following theorems are true:

Theorem 6. [43]. For any automaton M1 ∈ M1,γ,k1 identification

of its initial state (with the accuracy to the set of equivalent states)

is reduced to searching any solution of equation mu = a0, where an

element a0 ∈ Gγ is determined as the result of some simple experiment

of the length 1 with the automaton M1.

Theorem 7. [43]. For any automaton M2 ∈ M2,γ,k1 identification

of its initial state (with the accuracy to the set of equivalent states)

is reduced to searching any solution of equation mnv = b0, where an

element b0 ∈ Gγ is determined as the result of some simple experiment

of the length 1 with the automaton M2.

Theorem 8. [43]. Exact imitation model for the family M1,γ,k1 of

Mealy FA can be designed as the result of some multiple experiment of

the multiplicity 3 and of the height not exceeding |Gγ | + 1. The total

length of all input strings applied to the investigated automaton in this

experiment does not exceed |Gγ |+ 1 + 0.5|Gγ | · (|Gγ |+ 3).

Theorem 9. [43]. Exact imitation model for the family M2,γ,k1 of

Moore FA can be designed as the result of some multiple experiment

of the multiplicity 2 and of the height not exceeding |Gγ |. The total

length of all input strings applied to the investigated automaton in this

experiment does not exceed |Gγ |+ 0.5|Gγ | · (|Gγ |+ 1).

These results imply some feasibility for using above considered fam-
ilies of FA in resolving problems of information protection.

4 Quantum Automata

QFA under supposition that unitary operators associated with input
alphabet commute each with the others have been investigated in [44].
Languages accepted either with given probability, or with given error
have been characterized as follows.

Let X = {x1, . . . , xm} be the input alphabet of QFA. It is supposed
that elements of the set U = {Ui|i ∈ Nm} (Ui is unitary operator
associated with xi ∈ X) commute each with the others. With any input
string w ∈ X

l (l ∈ N) the string prU (w) = U
r1
1

. . . U rm
m can be associated,

238

On some trends . . .

where ri (i ∈ Nm) is the number of occurrences of xi in w. Let ≡X,U be
equivalence on X

+ defined as follows: w1≡X,Uw2 ⇔ prU(w1) = prU (w2).

The following theorem is true:

Theorem 10. [44]. Let U be any set of unitary operators that com-

mute each with the others. Then any language accepted (either with

given probability, or with given error) by the model MO-1QFA, as well

as by the model L-QFA with measurement at final instant only is union

of some elements of the factor-set X/≡X,U .
Similar results can be established for models kQFA and L-kQFA

under supposition that unitary operators associated with elements of
the set X

k commute each with the others. However, some technical
difficulties arise with definition of equivalence on the set T due to the

presence of elements of the set
k−1
⋃

i=1

X
i{Λ}k−i.

In [38] presented above approach has been worked out in detail
for one of the most simple models of QFA, namely 1-qubit QA under
supposition that associated unitary operators are rotations of the Bloch
sphere [5, 6] around the y-axe and measurement of a state is produced
at final instant only. Criteria when investigated models MO-1QFA, L-
QFA, kQFA and L-kQFA accept some language with given probability,
as well as with given error has been established.

These results imply feasibility of investigation of the structure of
the set S of all finitely generated commutative semigroups of special
unitary operators in C

2 (the notion ’special’ means that the determi-
nant of a matrix that defines unitary operator equals to unit). This
problem has been investigated in [45]. Six sets of semigroups contained
in the set S have been extracted. However, it is still unknown, if these
sets cover the set S or not.

5 Conclusions

In given paper some research in two new trends of FA theory have been
presented.

The first trend deals with investigation of FA families defined on
algebraic structures over finite rings. Presented results justify some

239

V.V. Skobelev, V.G. Skobelev

feasibility for using these families in resolving problems of information
protection. Based on this viewpoint, the following further research can
be pointed. Firstly, searching non-trivial FA families for which any
asymptotically accurate simulation model is much more complicated
than a system of equations defining the family itself. Secondly, char-
acterization of families of reversible FA for which transition to any
simulation model results in essential loss of accuracy. Thirdly, de-
tailed investigation into computational security of specific families of
hash-functions determined by outputless automata over finite rings.
Fourthly, detailed investigation into computational security of FA fam-
ilies defined on elliptic curves over finite fields.

The second trend deals with investigation of languages accepted by
QFA models under supposition that unitary operators associated with
input alphabet commute each with the others. In this direction, some
progress in investigation of 1-qubit QFA have been achieved. How-
ever, no similar results are known for l-qubit QFA (l ≥ 2). Possibly,
the reason is that no visual geometric model which is similar to Bloch
sphere is known for l ≥ 2. Characterization of l-qubit QFA (l ≥ 2) un-
der supposition that unitary operators associated with input alphabet
commute each with the others forms some trend for future research.

References

[1] A.M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proc. London Math. Soc., ser. 2, vol. 42
(1936), pp. 230–265.

[2] Automata studies (Ed. by C.E. Shannon, J. McCarthy). Princeton
University Press, 1956.

[3] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone. Handbook of ap-

plied cryptography. CRC Press, 2001.

[4] J. Kaz, Y. Lindell. Introduction to modern cryptography. CRC
Press, 2007.

240

On some trends . . .

[5] M.A. Nielsen, I.L. Chuang. Quantum computation and quantum

information. Cambrige University Press, 2010.

[6] C.P. Williams. Explorations in quantum computing. Springer-
Verlag London Limited, 2011.

[7] V.M. Glushkov. Synthesis of digital automata. Moskow, Nauka,
1962. [in Russian]

[8] Z. Kohavi. Switching and finite automata theory. New York,
McGraw-Hill, 1970.

[9] B.A. Trachtenbrot, Y.M. Barzdin. Finite automata. Behavior and

synthesis. North-Holland, 1973.

[10] A.A. Letichevskii. Completeness conditions for finite automata.

USSR Computational Mathematics and Mathematical Physics,
vol. 1, issue 3 (1962), pp. 829–840.

[11] M.I. Kratko. Undecidability of completeness for finite automata.

Doklady AN SSSR, vol. 155, No 1 (1964), pp. 35–37. [in Russian]

[12] A. Gill. Introduction to the theory of finite-state machines. New
York, McGraw-Hill, 1962.

[13] V.M. Glushkov. The abstract theory of automata. Russian Mathe-
matical Surveys, vol. 16, No 5 (1961), pp.1–53.

[14] S. Eilenberg. Automata, languages and machines. Vol. A. New
York, Academic Press, 1974.

[15] S. Eilenberg. Automata, languages and machines. Vol. B. New
York, Academic Press, 1976.

[16] V.M. Glushkov, G.E. Tseitlin, E.L. Yushchenko. Algebra, lan-

guages, programming. Kiev, Naukova Dumka, 1978. [in Russian]

[17] D.A. Huffman. Canonical forms for information-lossless finite

state logical machines. IRE Transactions Circuit Theory. Special
Supplement, vol. CT-6 (1959), pp. 41–59.

241

V.V. Skobelev, V.G. Skobelev

[18] S. Even. On information-lossless automata of finite order. IEEE
Transactions on Electronic Computers, vol. EC: 14, Issue: 4
(1965), pp. 561–569.

[19] M.O. Rabin Probabilistic automata. Information and Control, No
3 (1963), pp. 230–245.

[20] A. Paz A. Introduction to probabilistic automata. New York, Aca-
demic Press, 1971.

[21] J.G. Kemeny, T.L. Snell. Finite Markov chains. Princeton, NJ: D.
Van Nostrand, 1960.

[22] E.R. Berlekamp. Algebraic coding theory. New York, McGraw-Hill,
1968.

[23] W.W. Peterson, E.J. Weldon, Jr. Error-correcting codes. The
M.I.T. Press, Cambridge, MA, 1972.

[24] L.A. Zadeh, C.A. Desoer. Linear system theory. New York,
McGraw-Hill, 1963.

[25] A. Gill. Linear sequential circuits - analysis, synthesis, and appli-

cations. New York, McGraw-Hill, 1966.

[26] B.A. Sevastyanov, V.P. Chistyakov. On the number of input se-

quences corresponding to the output sequences of a finite au-

tomaton. Review of Applied and Industrial Mathematics, vol. 1,
Moskow, TVP (1994), pp. 96–107. [in Russian]

[27] V.L. Kurakin, A.S. Kuz’min, A.A. Nechaev. Pseudo-random and

polylinear sequences. Memoires in Discrete Mathematics, vol. 1,
Moskow, TVP (1997), pp. 139–202. [in Russian]

[28] V.L. Kurakin, A.S. Kuz’min, A.A. Nechaev. Properties of linear

and polylinear recurrencies over Galois rings (I). Memoires in Dis-
crete Mathematics, vol. 2, Moskow, TVP (1998), pp. 191–222. [in
Russian]

242

On some trends . . .

[29] D.V. Speransky. Experiments with linear and bilinear finite au-

tomata. Saratov, Saratov State University, 2004. [in Russian]

[30] A.V. Babash. Approximate models for finite automata. Review of
Applied and Industrial Mathematics, vol. 12 (2005), pp. 108–117.
[in Russian]

[31] N. Courtois, W. Meier. Algebraic attack on stream ciphers with

linear feedback. LNCS, vol. 2656 (2003), pp. 345–349.

[32] V.N. Trenkaev, R.G. Kolesnikov. Automata approach to attack on

symmetric ciphers. Bulletin of Tomsk State University. Appendix,
No 23, (2007), pp. 130–135.

[33] V.V. Skobelev, V.G. Skobelev. Ciphersystems analysis. Donetsk,
IAMM of NASU, 2009. [in Russian].

[34] V.V. Skobelev, N.M. Glazunov, V.G. Skobelev. Varieties over

rings. Theory and applications. Donetsk, IAMM of NASU, 2011.
[in Russian].

[35] C. Moore, J. Crutchfield. Quantum automata and quantum gram-

mars. Theor. Comput. Sci., vol. 237 (2000), pp. 257–306.

[36] A. Ambainis, M. Beaudry, M. Golovkins, at al. Algebraic results

on quantum automata. LNCS, vol. 2996 (2004), pp. 93–104.

[37] A. Belovs, A. Rosmanis A., J. Smotrovs. Multi-letter reversible

and quantum finite automata. LNCS, vol. 4588 (2007), pp. 60–71.

[38] V.G. Skobelev. Analysis of finite 1-qubit quantum automata uni-

tary operators of which are rotations. Visn., Ser. Fiz.-Mat. Nauky,
Kyiv. Univ. Im. Tarasa Shevchenka, No. 2 (2014), pp. 194–201.

[39] V.V. Skobelev. Simulation of automata over a finite ring by the

automata with a finite memory. Journal of Automation and Infor-
mation Sciences, vol. 44, issue 5 (2012), pp. 57–66.

243

V.V. Skobelev, V.G. Skobelev

[40] V.V. Skobelev. Analysis of the problem of recognition of automaton

over some ring. Dopov. Nats. Akad. Nauk Ukr., Mat., Pryr., Tekh.
Nauky, No 9 (2012), pp. 29–35.

[41] V.V. Skobelev. Analysis of families of hash functions defined by

automata over a finite ring. Cybern. Syst. Anal., vol. 49, No. 2
(2013), pp. 209–216.

[42] V.V. Skobelev. Analysis of automata models determined on va-

rieties ovef finite ring. Journal of Automation and Information
Sciences, vol. 45, issue 8 (2013), pp. 21–31.

[43] V.V. Skobelev. Automata on algebraic structures. Donetsk, IAMM
of NASU, 2013. [in Russian]

[44] V.G. Skobelev. Quantum automata with operators that commutes.

Visn., Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka,
Special Issue (2013), pp. 34–41.

[45] V.G. Skobelev. On the structure of the set of all finitely gener-

ated semigroups of special unitary operators in the space C
2. Visn.,

Ser. Fiz.-Mat. Nauky, Kyiv. Univ. Im. Tarasa Shevchenka, No. 3
(2014), pp. 182–187.

Volodymyr V. Skobelev, Volodymyr G. Skobelev Received June 20, 2015

Volodymyr V. Skobelev

V.M. Glushkov Institute of Cybernetics of NAS of Ukraine

40 Glushkova ave., Kyiv, Ukraine, 03187

Phone: +38 063 431 86 05

E–mail: vvskobelev@incyb.kiev.ua

Volodymyr G. Skobelev

V.M. Glushkov Institute of Cybernetics of NAS of Ukraine

40 Glushkova ave., Kyiv, Ukraine, 03187

Phone: +38 063 431 86 05

E–mail: skobelevvg@mail.ru

244

Part 7

Semantic

technologies

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

The Law of Gravitation in Ontology Dynamics

(Invited paper)

Vadim Ermolayev

Abstract

This paper presents the substance of the invited talk given
at the 2015 Workshop on Foundations of Informatics. The idea
undelying the presented research work is to borrow a plausible
analogy of a “system law” from the field of Dynamics in Mechan-
ics – the Newton’s Law of Universal Gravitation. This analogy is
exploited for building the law of gravitation in dynamic systems
comprising a Domain of Discourse and knowledge representations
(ontologies) describing this domain. As the elements of knowl-
edge representation do not possess physical mass, this component
of the gravitation law is substituted by the fitness of an ontology
to the requirements of the knowledge stakeholders relevant for
the described domain. It is also argued in the paper that the im-
plementation of the developed theoretical framework is feasible
as the supporting techniques, including some software tools, al-
ready exist. As the examples of the relevant component methods
and tools, the paper presents the OntoElect methodology, On-
tology Difference Visualizer, and Structural Difference Discovery
Engine. These instruments help solve the practical problems in
eliciting domain requirements, developing structural contexts for
the requirements, generating the mappings between these struc-
tural contexts and the target ontology, computing increments and
decrements of ontology fitness based on these mappings. It is con-
cluded that the presented framework has prospects to be applied
practically for visualization and analysis of ontology changes in
dynamics. Use cases in ontology refinement and anomaly detec-
tion are suggested for validation.

Keywords: Ontology, Domain, Dynamics, Gravitation, Fit-
ness

c©2015 by V. Ermolayev

246

The Law of Gravitation in Ontology Dynamics

1 Introduction

The world of knowledge representations, comprising ontologies, is by
its nature a reflection of the world we live in. Dynamics in physical,
social, biological contexts are the subject of study by several disciplines,
where useful analogies can be sought. The findings hint about a way
to identify and specify useful aspects and help offer the law to describe
dynamics in ontological systems.

It is known for example from Mechanics, the branch of Physics and
Engineering, that Kinematics studies the motion of objects without
direct reference to the causes of this motion. Motion in this context
is understood as a change of position, often compared to a reference
point. In difference to Kinematics, Dynamics is concerned with forces
and torques and their effect on the motion of objects. For example,
in Dynamics it is analyzed why an object changes its position and due
to which causes or influences the acceleration has this specific value
function over time.

One of the particular kinds of forces of interest regarding a physi-
cal system is gravitation. Basically, gravitation forces are known to be
expressed by the Newton’s Law of Universal Gravitation [1] as propor-
tional to the product of interacting masses and inverse to the square
distance between these masses. In biological and social systems similar
“forces” reflect the degree of “attraction” of a particular object to a
group, habitat, etc. For knowledge representations, an analogy to the
notions of mass, gravitation, force could be sought in terms of the fit-
ness of a knowledge representation module to the requirements of the
stakeholders in the Domain of Discourse or its similarity to the other
modules which could be found regarding the Domain of Discourse.

This paper presents the substance of the invited talk given at the
2015 Workshop on Foundations of Informatics (FOI-2015). It starts
with the discussion of the notion of an ontology – one of the funda-
mental concepts in Knowledge Representation and Management. In
this context, the property of being a “shared conceptualization” is
explained in terms of the fitness to the requirements of the domain
knowledge stakeholders, resulting in their commitment. The paper

247

V. Ermolayev

continues with an outline of the state of the play in the field of On-
tology Change, putting a particular emphasis on ontology Dynamics
versus Kinematics. Then, the fundamentals of the theory of Ontol-
ogy Dynamics based on the analogy to the Newton’s Law of Universal
Gravitation are presented. Yet further, the paper deliberates about
the techniques for implementing this theoretical ontology gravitation
framework. The paper concludes with the summary of the presented
work and outlines the potential applications of the presented framework
in Ontology Refinement and Anomaly Detection.

2 Ontologies, Domain Requirements, Fitness,
and Dynamics

An ontology is often denoted as a “formal, explicit specification of a
shared conceptualization” (c.f. [2]) and this paper follows this defini-
tion. In particular it is focused on describing and exploiting the prop-
erties of being “formal” and “explicit” regarding the representation of
a conceptualization (specification), and – even more importantly – the
property of being “shared” regarding the conceptualization itself. It is
also emphasized that the completeness of an ontology has a straight-
forward impact on becoming a “shared conceptualization”.

Being “formal” means that an ontology has to be specified using
a formally defined ontology specification language such that logical
inference is enabled with respect to this artifact. To enable logical
inference, such a language needs to be based on logics – so an ontology is
a logical theory. Ontology is also a descriptive theory as it is developed
with the purpose to describe common sense, abstract high-level notions,
or a Domain of Discourse.

Following for example [3], an ontology is a logical descriptive theory
formally denoted as a tuple O = 〈C,P, I, T, V,≤,⊥,∈,=〉 where C is
the set of concepts (or classes); P is the set of properties (object and
datatype properties); I is the set of individuals (or instances); T is the
set of datatypes; V is the set of values; ≤ is a reflexive, anti-symmetric,
and transitive relation on (C × C)∪(P × P)∪(T × T) called specializa-

248

The Law of Gravitation in Ontology Dynamics

tion, that helps form partial orders on C and P called concept hierarchy
and property hierarchy respectively; ⊥ is an irreflexive and symmetric
relation on (C × C) ∪ (P × P) ∪ (T × T) called exclusion; ∈ is a rela-
tion over (I × C) ∪ (V × P) called instantiation; = is a relation over
I × P × (I ∪ V) called assignment. The sets C,P, I, T, V are pairwise
disjoint. It is also assumed (c.f. [4]), that an ontology O comprises its
schema S and the assertional part A:

O = 〈S,A〉 ;S = 〈C,P, T 〉 ;A = 〈I, V 〉 . (1)

Ontology schema S is also referred to as a terminological compo-
nent (TBox). It contains the statements describing the concepts of
O, the properties of those concepts, and the axioms over the schema
constituents. The set of individuals A, also referred to as assertional
component (ABox), is the set of the ground statements about the in-
dividuals and their attribution to the schema – i.e. where these indi-
viduals belong.

This paper focuses on the ontologies that describe a particular well
circumscribed Domain of Discourse – classified as domain ontologies.
The reason for this emphasis is that any ontology development pro-
cess, including its change management or refinement, takes as an input
the requirements by the subject experts in the domain of interest and
produces the ontology as its output – covering those requirements cor-
rectly and to the maximal possible extent. Straightforwardly, the set
of methods shaping out this process needs to comprise the mechanisms
for:

• Eliciting the (change1) requirements from the domain knowledge
stakeholders as fully as possible

• Measuring how completely the requirements were captured

• Transforming the elicited requirements to the (changes in the)
ontology

1Change requirements are elicited in the ontology Refinement phase. In the phase
of Initial Development initial requirements are collected.

249

V. Ermolayev

• Measuring how well the result fits to the intentions of the domain
knowledge stakeholders

If a methodology fails to do any of the above sufficiently well, then
the commitment of the knowledge stakeholders to the output ontology
will be low. So, such a product cannot be regarded as a really “shared
conceptualization”.

Hence, a domain ontology OD could be regarded as a harmonized
formal, and explicit representation of the union of the interpretations
(K) by the knowledge stakeholders si ∈ S of the subject domain D.
So, näıvely, we may elicit all the K-s and build the ontology of those
as:

OD = hrm(
⋃
S

unffj (Ksi)), (2)

where hrm is a harmonization function and unf is the transformation
that maps a knowledge interpretation represented in the form fj to the
knowledge representation formalism used by the knowledge engineer
(unification). Even if so, harmonization and unification functions are
not easy to perform. For example, a formalism fj for Ksi could be more
expressive than the ontology specification language used for coding
OD; Ksm and Ksn could be mutually contradictory in some parts;
etc. Reality introduces more complications – mainly influencing the
properties of being explicit and complete:

• K-s are subjective. The stakeholders interpret their domain
based on their individual background knowledge and experience.

• K-s are tacit. The views on the domain by the subject experts
are often not stated explicitly. On the contrary, some parts of
those K-s are assumed, taken as evident or default, subsuming
that (all) the professional community regards these assumptions
in a similar way. The tacit parts are the cause for difference in
interpretations, or even misinterpretations.

• K-s are partial. Subject experts focus on their narrow context
of professional interest and expertise, and have only a shallow

250

The Law of Gravitation in Ontology Dynamics

coverage of the broader area within the domain. The partiality
and fragmentation of their K-s is the reason for (a) contradictions
between different views on the overlapping contexts; and (b) gaps
in the coverage of the domain.

• K-s are not available. The knowledge stakeholders are not read-
ily willing to spend their time for materializing their K-s or re-
vealing them to knowledge engineers in another form.

In Ontology Engineering and Management the degree of the con-
formance of an ontology to the requirements of the domain knowledge
stakeholders is regarded as its fitness. Measuring ontology fitness is not
an easy task as one has to have: the requirements; the ontology; these
two compared and difference measured. Several approaches to ontology
fitness measurement are known from the literature – e.g. [5, 6]. One
of these approaches has been developed as a part of the OntoElect on-
tology engineering methodology [7]. In OntoElect, ontology fitness to
domain knowledge stakeholder requirements is understood as propor-
tional to the ratio of positive and negative votes of these stakeholders
regarding the assessed ontology. These votes are collected indirectly
[7], as for example in [8], by:
• Extracting a saturated set of multi-word key terms from the sta-

tistically representative document corpus

• Detecting the most influential key terms by applying weights to
the most “important” documents in the corpus

• Transforming the natural language definitions of the selected key
terms to formalized structural contexts in the ontology specifica-
tion language; and

• Mapping the structural contexts to the ontology
Ontologies describing realistic domains could be substantially large

and complex in their structures and properties. So, the development
and management of these descriptive theories call for solving several
interesting research problems. As profoundly surveyed in [9], ontology
change – changing an ontology in response to a certain need – is one of

251

V. Ermolayev

the most important and challenging among them. The term of ontol-
ogy change is often used broadly – to cover several interrelated facets
of the problem and comprise different kinds of changes to ontologies:
in response to external events; caused by translations to a different
language having different expressive power; caused by the evolution of
stakeholder requirements; introduced by the ontology engineer accord-
ing to the evolved understanding of the domain; etc. Several research
sub-fields have emerged to cope with this broad variety of change as-
pects: ontology evolution; versioning; merging; mapping; matching;
alignment; refinement – to mention the most prominent.

The plethora of these research facets, all looking at the phenomenon
of change in ontologies, gave also the birth to the Ontology Dynamics
community (http://ontologydynamics.org/). It may be noticed how-
ever, that the mainstream approach, also adopted by the aforemen-
tioned community, follows more Kinematics than Dynamics. Indeed,
the term of “ontology change” is referred to “the problem of deciding
the modifications to perform upon an ontology in response to a certain
need for change as well as the implementation of these modifications
and the management of their effects in depending data, services, appli-
cations, agents or other elements” (c.f.[9]). In simple words: given the
need for a change, it is decided what is changed and to what extent –
i.e. if following the analogy with Mechanics, how much the position,
velocity, acceleration of the object changes.

It appears that the field of Ontology Change does not look suffi-
ciently deeply into the causes of a change – which is in fact the task for
Ontology Dynamics. In this paper some steps are made toward laying
out a foundation for filling this gap based on analyzing the (changes in
the) fitness of an ontology to a particular Domain of Discource.

3 Ontology Dynamics and the Law of Gravita-
tion

Let us now think of a system, comprising a Domain of Discourse and
several ontologies describing it, as of a closed “mechanical” system.
For making this analogy plausible – i.e. to be able to propose usable

252

The Law of Gravitation in Ontology Dynamics

dynamic laws – we have to find the proper analogies to the mechanical
notions of: a coordinate grid and its origin; a position, a distance, a
motion; a mass; and a force (gravitation).

Let us assume that a Domain of Discourse (D) is adequately mod-
eled by the set of all relevant requirements (R), by its knowledge stake-
holders, for representing knowledge in this domain. For building a grid
based on these requirements it is assumed, as pictured in Fig. 1a, that:

• All the requirements are placed in the centre of the D; and

• They are not equal in their importance – i.e. have different
spheres of influence around the centre of gravitation, which is
quantified using normalized scores ns ∈ [0, 1].

Figure 1. Domain requirements, their spheres of influence (a), and
gravitation forces (b)

Imagine now that an ontology (O) appears to be positioned in D
at a (semantic) distance l from its centre (Fig. 1(b)). This can be any
location on the circle of radius l around the centre of the grid. We
are now interested in what might be the forces influencing O in this
position.

253

V. Ermolayev

Let us assume that O is checked against the requirements r from R
which spheres of influence reach the position of O (i.e. nsr ≥ l). The
following are the possible outcomes of these checks:

• A particular part of O, say a semantic context o ∈ O (a white
coloured circle in Fig. 1(b)), fulfils the requirement r. Therefore
O becomes more fitting to R. In this case we will consider that
the increase in fitness (∆Φ+

o) creates a positive gravitation force
−→
G+
o applied to O and directed towards the centre of D, as pictured

in Fig. 1(b). The absolute value of this force is computed using
a direct analogy with the Newton’s Law of Universal Gravitation
[1]:

G+
o =

1×∆Φ+
o

(nsr)2
, (3)

where: “1” in the numerator is the fitness of r with respect to D –
meaning that r fits D perfectly as one of its requirements; the value of
∆Φ+

o is within [0, 1].

• There is no semantic context o ∈ O that fulfills the requirement r
(no circle on the ontology side in Fig. 1(b)) or there is an o that
contradicts r (a black coloured circle in Fig. 1(b)). In both cases
O becomes less fitting to R. Therefore we will consider that the
decrease in fitness (∆Φ−O for a missing semantic context; ∆Φ−o for
a context contradictory to o) creates a negative gravitation force
−→
G−O or

−→
G−o applied to O and directed towards the periphery of D,

as pictured in Fig. 1(b). Similarly to (3), the absolute values of
these forces are computed as:

G−O =
1×∆Φ−O

(nsr)2
,

G−o =
1×∆Φ−o

(nsr)2
. (4)

254

The Law of Gravitation in Ontology Dynamics

The overall gravitation force applied to O as an influence by D is
computed as a vector sum:

−→
GO
∣∣∣
D

=
∑

r∈R:nsr≥l

(−→
G+
o +
−→
G−O +

−→
G−o

)
. (5)

O is considered as properly positioned within D when it reaches its
equilibrium state with respect to the gravitation field in D, i.e. appears

at a distance l from the centre of D at which
−→
GO
∣∣∣
D

=
−→
0 . This distance

could be interpreted as an integral measure of the semantic difference
between what does O describe and what is required to be described for
D by its knowledge stakeholders. If O is not in an equilibrium state

regarding D,
−→
GO
∣∣∣
D

will cause it to move either towards the centre of

D or towards its periphery.

O also generates its gravitation field which affects D. However,
we do not take into account the movement of D because the centre
of the grid (and therefore a potential observer) is always located in
the centre of D. The gravitation field of O will come into effect in
this grid if there are several ontologies positioned within D. This case
is resolved similarly to the case of a single ontology described above.
Ontology A reaches its equilibrium state within D and with respect

to the ontologies B and C if
−→
GA
∣∣∣
D

+
−→
GA
∣∣∣
B

+
−→
GA
∣∣∣
C

=
−→
0 . So do the

other ontologies B and C. In this equilibrium state the distances lAB,
lAC , lBC could be interpreted as the integral measures of the semantic
difference in the respective pairs of ontologies, also under the influence
of R in D. One topical difference for the case of multiple ontologies
is that the differences and similarities in the pairs of ontologies are
computed differently compared to the fitness in the pair O, D. For
comparing ontologies, the use of matching techniques is the mainstream
approach.

The subsequent section elaborates how could the set of requirements
R be formed for D and also how could fitness changes and semantic
differences between ontologies be computed.

255

V. Ermolayev

4 Supporting Techniques

For making the theoretical framework based on the Law of Gravitation
usable in practice several technical problems have to be solved and
corresponding software tools be developed. The techniques and tools
applicable in this context are presented in this section.

4.1 Extracting Domain Requirements

As explained in Section 2, a feasible way to make domain requirements
explicit is to do it indirectly – by extracting multi-word key terms from
a representative corpus of documents describing the domain. A doc-
ument corpus could be considered as representative if it is sufficiently
completely covers the description of the domain. One way to assess
completeness is to use the saturation metric proposed in OntoElect.

Let Doc = Doc1, ..., Doci+1 = Doci
⋃

∆i+1, ..., Docn be the se-
quence of the samples of the document corpus which are built incremen-
tally – i.e. each subsequent sample Doci+1 in the sequence is created
by adding a number of new relevant documents (∆i+1) to the previous
sample Doci. Let Ti = {(tij , sij , nsij)} be the bag of terms and their
normalized scores extracted from the sample Doci. A normalized score
nsij of a term tij is computed as nsij = sij/s

i
max where simax is the max-

imal score among all the terms in the bag. A bag of terms Ti is the
termhood related to Doci if Ti contains only:

• Significant terms – i.e. those scored above the significance thresh-
old εs; and

• Valid terms – i.e. those remaining after filtering out the terms
that are highly ranked, but have no substantial contribution to
the semantics of the domain.

One reasonable way to choose εs is to ensure that the terms in
the termhood reflect the majority of the stakeholders’ opinions. This
could be done by taking in those terms from the top of the bag of terms,
sorted by term score, having the sum of the scores slightly higher than
the 50 per cent of the sum of all scores in the bag of terms.

256

The Law of Gravitation in Ontology Dynamics

Doc = Doc1, ..., Docn−1, Docn is considered saturated if:

thd(Tn−1, Tn) < εst, (6)

where: thd is the termhood difference function computed using the
THD algorithm [7] which takes semantically equivalent and orphan
terms in consideration; εst is the saturation threshold chosen empiri-
cally by a knowledge engineer for the given domain; Tn−1, Tn are the
termhoods related to the two final document samples Docn−1, Docn of
Doc.

It is assumed in our work that the sequence of thd values monotoni-
cally going down below εst indicates that Docn is a complete document
corpus possessing sufficient representativeness. Non-monotonicity of
thd values sequence signals that the corresponding ∆i+1 is either not
very relevant to the domain or is a valuable addition containing the ter-
minology not used in the previous samples (Doci). Anyhow, saturation
indicates that the chosen document corpus is complete.

In order to apply semi-automated ontology mapping technique to
compare these extracted requirements and ontology contexts, the re-
quirements have to be represented similarly formally as the ontology.
For achieving that:

• Natural language definitions for the terms in the final termhood
are collected. An example is given in Figure 2. This activity is
performed manually by a knowledge engineer.

• Formalized semantic contexts are built for the terms using the re-
trieved definitions. This activity could be facilitated by following
the OntoElect methodology as described in [7,8].

• The mappings of the constructed semantic contexts to the ontol-
ogy are created. This activity could be done semi-automatically
using the software tools for ontology alignment [11,12].

4.2 Computing Ontology Fitness

For measuring the fitness of the entire ontology or its particular
constituents with respect to the domain requirements the OntoElect

257

V. Ermolayev

methodology [7] recommends to use the metaphor of votes. Votes are
computed based on:

• The scores of the respective terms t in R

• The mappings of the terms to the ontology elements

A mapping of the term t to ontology O is denoted as the function
that establishes a relationship between t and the element of O: µ =
(t, re, o, cf), where re is the relationship type
re∈{equivalence,membership,subsumption,meronymy,association},
o is the element in O, and cf is the confidence factor with a value from
[0, 1]. Hence, Mo = {µ} is the set of all term mappings to the ontology
element o.

A positive vote vo for an ontology element o ∈ O is denoted as
a value reflecting the evidence of referring to o by the term t through
the term mapping µ:

vo =
∑
µ∈Mo

ns× w(re)× cf, (7)

where: ns is the normalized score of t; cf is the confidence factor of the
respective mapping µ; and w(re) is the weight of the mapping based
on the type of the relationship re of µ. The weights are introduced
to reflect that different types of mappings could be regarded as the
arguments of different strength in favour of this ontological element.
Indeed, if a term is equivalent to the element, then it is a strong di-
rect argument in favour of the element. However a statement about
being an individual member of the element, a direct subsumption of an
element, being a part of an element, or having an association to an ele-
ment is considered as a weaker argument. So the weights are proposed
as: equivalence – 1.0; membership – 0.7; subsumption, meronymy –
0.5; association – 0.3. These values may further be reconsidered if any
experimental evidence is collected in this respect. Direct subsumption
mappings to very abstract elements in the ontology should however be
avoided. For example, all concepts, and therefore the terms categorized
as concepts, subsume to the root concept of a Thing present in any

258

The Law of Gravitation in Ontology Dynamics

OWL ontology. This subsumption mapping has indeed very little to
do with domain semantics and therefore should not be counted as an
argument for a vote. Valid direct subsumption mappings have to be
sought to the most specific possible ontology elements. Indirect sub-
sumption mappings could further be accounted for propagating votes
up the concept hierarchy as described below. Propagated votes may
be used to further clarify the distribution of the fitness upwards the
subsumption hierarchy of the ontology.

So far only direct positive votes with respect to ontology elements
have been discussed. So, the overall ontology fitness computed based
on these votes reflects only the arguments focused on an element and
without any influence on the surrounding of this element. This however
might not be fully correct with respect to the fitness of the surround-
ing elements. Indeed, let us for example assume that the concept of a
Clock in a Time ontology gets a vote. Then it may be expected that
the concept of an Instrument, subsuming Clock (see also Fig. 2),
also qualifies for the part of the value of this vote. A straightforward
reason is that, due to the subsumption relationship, the more specific
concept inherits the properties of the more abstract concept in the sub-
sumption hierarchy. So the vote has to be propagated up the hierarchy
with attenuation – factored empirically or possibly aligned with the
proportion of the inherited properties in each individual case.

A propagated vote vpo for an ontology element o ∈ O is the value
reflecting the contribution of o to the semantics of the ontology element
osub subsumed by o:

vpo = att× vosub , (8)

where att is the attenuation coefficient.

Positive and propagated votes provided by the term t are further
used for computing the fitness increments ∆Φ+

o of the elements in
O.

∆Φ+
o =

∑
µ∈Mo

vo +
∑
Osub

o

vpo , (9)

259

V. Ermolayev

Figure 2. Term processing pipline by example. The term and semantic
context of a Clock.

260

The Law of Gravitation in Ontology Dynamics

where Osubo is the subset of the elements in O which are subsumed by
o.

A negative vote provided by a term t (v−t = −ns) is:

• Either a vote based on the term t ∈ Tmiss pointing out that t
is not described by O. In this case a fitness decrement for the
whole ontology O could be computed as:

∆Φ−O = v−t |t∈Tmiss ; (10)

• Or a vote pointing out that the term t is in a contradiction with
a particular ontology element o. In this case a fitness decrement
for the ontology element o ∈ O could be computed as:

∆Φ−o = v−t . (11)

The overall change in ontology fitness caused by the influence of the
term t (requirement r ∈ R), being the sum of all positive, propagated,
and negative votes could hence be computed as follows:

∆ΦO |t =
∑
O

(∆Φ+
o + ∆Φ−o) + ∆Φ−O. (12)

Consequently, the change in overall ontology fitness caused by R is:

∆ΦO |R =
∑
R

(∆ΦO |t) , (13)

As already mentioned in Section 2.2, all these changes are taking
effect if the sphere of influence ns of the requirement r = (t, ns) ∈ R is
more or equal to the distance l between O and D.

4.3 Computing Mappings between Ontologies

The creation of the mappings of the semantic contexts of the terms
from the termhood could be done in a partially automated way using

261

V. Ermolayev

an appropriate ontology matching technique. One possible technique
is meaning negotiation using argumentation based on the exchange of
presuppositions [10]. This approach has been implemented in several
software tools supporting different steps in the mapping generation
process:

• Computing the structural changes between two different OWL
ontologies and visualizing the difference using an extension to the
UML class diagram language could be performed by the Ontology
Difference Visualizer tool [11]

• Generation of the mappings between the TBoxes of two different
ontologies in the ontology alignment format or as ABox transfor-
mation rules could be facilitated using the Structural Difference
Discovery Engine [12]

5 Conclusive Remarks

This paper presented the approach to deal with dynamics in knowledge
representations, in the form of ontologies, regarding the domains these
ontologies are intended to describe. In order to place the reported
research in the context of the scientific discipline, the basics of Ontology
Engineering, Management, and Change have been concisely presented
in Section 2.

The high-level idea followed in the presented work is to understand
the dynamics of ontologies in a way similar to the other scientific disci-
plines – primarily answering the questions about the causes of a change
and therefore offering the laws to compute forces, torques and their ef-
fect on the motion of ontologies within the domain. Hence, the central
part of the presented research deals with an attempt to exploit the
analogy with the Newton’s law of Universal Gravitation. This law
has however to be applied to the objects that do not possess physical
mass. Therefore, the proper analogues for a mass, a coordinate grid
and its origin; a position, a distance, a motion; and a force (gravitation)
have been elaborated – resulting in a theoretical Ontology Gravitation

262

The Law of Gravitation in Ontology Dynamics

framework presented in Section 3. This framework is based on the no-
tion and measurement of ontology fitness to the knowledge stakeholder
requirements to the description of a particular Domain of Discourse.

It has also been described in Section 4 of the paper that the im-
plementation of the presented theoretical framework is feasible as the
supporting techniques, including some software tools already exist. The
presentation focused on outlining the opportunities provided by the On-
toElect methodology, Ontology Difference Visualizer, and Structural
Difference Discovery Engine to help solve the practical problems in:

• Eliciting domain requirements without any direct involvement of
the knowledge stakeholders

• Developing structural contexts for multiple word key phrases that
indicate the requirements

• Generating the mappings between these structural contexts and
the target ontology

• Computing increments and decrements of ontology fitness based
on these mappings

The framework presented in the paper has prospects to be applied
practically for visualization and analysis of ontology changes in dynam-
ics. The following use cases could be of particular scientific, industrial,
and societal value.

Ontology refinement is the implementation of the required changes
in an ontology for making it fit the changed stakeholder requirements to
the maximal possible extent. In the terms of the Ontology Gravitation
framework described above, stakeholder requirements are captured by
R for D (Fig. 1), each having also its ns. So the changes in these
requirements result in the changes to the gravitation field generated by
D. These in turn will cause that the ontology O changes its position to
reach an equilibrium state in the changed gravitation field of D. This
new position of O may appear to be closer to the centre of D’s gravita-
tion – which indicates that the changes in the stakeholder requirements

263

V. Ermolayev

were favourable for the current implementation of O. It may also ap-
pear that O will move further out from the gravitation centre of D –
indicating that the changes in requirements hint about the necessity to
refine O. A simple visualization tool showing the changes in ontology
positions in response to the changes in the gravitation field of D may
become a powerful instrument for a knowledge engineer to assess and
justify the refinement of the particular fragments of the ontology. Such
a justification will be based on the acquired knowledge, in a condensed
and visualized form, about the causes triggering the needed change.

Anomaly detection in data analytics is about revealing the parts
of data that change beyond normal values – hinting about a potential
or developing problem in the system that is the source of these data.
For example, if a system is a civil community and its environment (D),
then it may be producing many diverse streams of observation data
coming from various sorts of sensors – like outdoor temperature mea-
surements, water levels, industrial emissions, share prices, cell phone
activity, etc. Imagine that each sort of censor measurement is described
by its individual ontology which is updated using knowledge extraction
from the respective incoming data stream. From the other hand, com-
munity requirements R reflect the desire of the stakeholders to live in
a comfortable (normal) environment: clean air and water; stable share
prices, no traffic hold-ups, etc. If so, it is reasonable to expect that an
equilibrium state, involving the abovementioned sensor data ontologies
and D, will show how close (normal) or far (abnormal) each sort of
sensor measurement is from the normal condition. This visual result
may be made available in time sufficient for emergency response to the
detected anomaly.

6 Acknowledgements

The theory of gravitation between ontologies and Domains of Dis-
cource, based on fitness, has been developed in the SemData project
funded by the Marie Cure International Research Staff Exchange
Scheme (IRSES) of the 7th Framework Programme of the European
Union, grant No PIRSES-GA-2013-612551. OntoElect methodology

264

The Law of Gravitation in Ontology Dynamics

has been developed as a part of the PhD project of Olga Tatarintseva.
The tools for ontology mapping and alignment have been developed
with Anton Copylov and Maxim Davidovsky.

References

[1] I. Newton. The Principia, Mathematical Principles of Natural Phi-
losophy, a new Translation.
By I Bernard Cohen and Anne Whitman, preceded by ”A Guide to
Newton’s Principia” by I Bernard Cohen, University of California
Press, 1999, ISBN 978-0-520-08816-0, ISBN 978-0-520-08817-7.

[2] Rudi Studer, V. Richard Benjamins, Dieter Fensel. Knowledge En-
gineering: Principles and Methods. In: Data & Knowledge Engi-
neering, 25(1-2):161–197, 1998.

[3] J. Euzenat, P. Shvaiko. Ontology Matching, Berlin Heidelberg
(DE), Springer-Verlag, 2007.

[4] D. Nardi, R. J. Brachman. An Introduction to Description Logics.
In The Description Logic Handbook, F. Baader, D. Calvanese, D.
L. McGuinness, D. Nardi, P. F. Patel-Schneider, Eds. Cambridge
University Press New York, NY, USA, 2007.

[5] A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann. Modelling
ontology evaluation and validation. In: Sure, Y., Domingue, J.
(eds.) ESWC 2006, LNCS 4011, pp. 140–154 (2006).

[6] Fabian Neuhaus, Amanda Vizedom, Ken Baclawski, Mike Ben-
nett, Mike Dean, Michael Denny, Michael Grüninger, Ali Hashemi,
Terry Longstreth, Leo Obrst, Steve Ray, Ram Sriram, Todd
Schneider, Marcela Vegetti, Matthew West, Peter Yim. Towards
Ontology Evaluation Across the Life Cycle. In: Applied Ontology.
8 (2013), pp. 179–194, DOI 10.3233/AO-130125.

[7] O. Tatarintseva, V. Ermolayev, B. Keller, W.-E. Matzke. Quanti-
fying Ontology Fitness in OntoElect Using Saturation- and Vote-

265

V. Ermolayev

Based Metrics. In: Ermolayev et al. (eds.) ICT in Education, Re-
search, and Industrial Applications. Revised Selected Papers of
ICTERI 2013, CCIS 412, pp. 136–162, Springer Verlag, Berlin –
Heidelberg (2013).

[8] V. Ermolayev, S. Batsakis, N. Keberle, O. Tatarintseva, G. An-
toniou. Ontologies of Time: Review and Trends. In: Int. J. of
Computer Science & Applications, 11(3), pp. 57–115, 2014.

[9] Giorgos Flouris, Dimitris Manakanatas, Haridimos Kondylakis,
Dimitris Plexousakis, Grigoris Antoniou. Ontology Change: Clas-
sification and Survey. In: The Knowledge Engineering Review,
23(2), pp. 117-152, 2008. doi:10.1017/S0269888908001367.

[10] V. Ermolayev, N. Keberle, W.-E. Matzke, V. Vladimirov. A Strat-
egy for Automated Meaning Negotiation in Distributed Informa-
tion Retrieval. In: Y. Gil et al. (Eds.): ISWC 2005 Proc. 4th Int.
Semantic Web Conference (ISWC’05), 6-10 November, Galway,
Ireland, LNCS 3729, pp. 201–215 (2005).

[11] V. Ermolayev, A. Copylov, N. Keberle, E. Jentzsch, W.-E. Matzke.
Using Contexts in Ontology Structural Change Analysis. In: Er-
molayev, V., Gomez-Perez, J.-M., Haase, P., Warren, P, (eds.)
CIAO 2010, CEUR-WS, vol. 626 (2010).

[12] M. Davidovsky, V. Ermolayev, V. Tolok. Agent-Based Implemen-
tation for the Discovery of Structural Difference in OWL-DL On-
tologies. In: H.C. Mayr et al. (Eds.): UNISCON 2012, LNBIP 137,
pp. 87–95 (2013).

Vadim Ermolayev Received July 1, 2015

Department of IT, Zaporizhzhya National University,
66 Zhukovskogo st., 69063, Zaporizhzhya, Ukraine
E–mail: vadim@ermolayev.com

266

Part 8

Natural language

processing

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Word formation problems in Romanian and

their solving by P systems

Artiom Alhazov Svetlana Cojocaru

Constantin Ciubotaru Alexandru Colesnicov

Ludmila Malahov Mircea Petic

Abstract

This paper is an overview of authors’ results in solving word
formation problem for Romanian. Generalized formal models for
inflexion and affixation are discussed. Two different approaches
of their application are presented: a classical one based on specific
grammars, and a bio-molecular one using membrane systems.

1 Introduction

Word formation is a well-known problem in natural language morphol-
ogy. In high inflectional languages including Romanian, we found ex-
tensive patterns for word inflection (declension of nouns and adjectives,
conjugation of verbs). Word derivation with prefixes and suffixes is
even more complicated. Inflection keeps word meaning while affixation
modifies it. Consequently, the semantic checking of the derived word
became necessary. Whereas these two processes seem to be different,
they have enough in common to be described by a unified formal model.

In this paper, we will present one such model of word formation. It
is described in Sec. 2.

Several approaches are possible to exploit this model. We will dis-
cuss two of them: classical (Sec. 3), and bio-molecular using membrane
systems, or P systems. The latter approach is characterized by its in-
trinsic massive parallelism. Sec. 4–7 discuss this. P systems can only

c©2015 by A. Alhazov, C. Ciubotaru, S. Cojocaru, A. Colesnicov,

L. Malahov, M. Petic

268

Word formation problems in Romanian . . .

be simulated [1]. Nevertheless, this approach is not pure theoretical
as its non-standard patterns of parallelization may be used on existing
supercomputers.

2 Word Formation Model

Let us consider a finite alphabet Σ. Below, all words are elements in
Σ∗, and all languages are over Σ (subsets of Σ∗). We will also permit
marks on symbols of words from Σ∗.

We will present possible root alternations as a finite set A of ordered
pairs of words. Four finite languages Pref, RR, Suf, and T present
prefixes, roots, suffixes, and terminations. T may contain the empty
word.

We will sometimes write elements of A in the form x → y focusing
on the operation of root alternation. To present operations of adding
a prefix or a suffix, we will use markings Pref or ̂Suf. This denotes a
set Pref or Suf, where all symbols of each word have lines or hats over
them. We denote the marked terminations by T = { t | t ∈ T}, and

the termination rewriting rules by
�

T= { t1 → t2 | t1, t2 ∈ T}.

The set of operations is Op = Pref ∪ ̂Suf ∪
�

T ∪A (adding a pre-
fix, or adding a suffix, or adding a termination, or performing root
alternation).

Now let us take a finite language M over Op. A word formation
step corresponding to a control word s = opi1 · · · opik ∈ M consists of
k operations from the set Op described above. Let us denote by op(w)
the result of operation op over a word w. Let us mention that the result
of some operations over some word may be undefined.

• p(w) = pw,
• ŝ(w t) = wŝ t ,
• (x → y)(w x) = w y ,

• (x → y)(w1xw2) = w1yw2,
• (oi1 · · · oik)(w) = oi1(· · · (oik(w)) · · ·).

M accepts a language L0 if:

269

A. Alhazov et al.

• L0 is obtained by removing the prefix, suffix and termination
marks from the words of some language L;

• if w ∈ RR, then w t ∈ L;
• if w ∈ L and s ∈ M , then s(w) ∈ L is defined;
• L is a minimal language with the said properties.
We would prefer the acceptor M to be supplemented by the lexical

decomposition of the input L0 in the form of the correspondence be-
tween operation steps s ∈ M∗, the words that were produced by s, and
the corresponding arguments for s. We will show the examples below.

3 Classical Approach

To inflect and to derivate Romanian words we developed a special gram-
mar formalizing word formation.

Inflexion. We use the paradigmatic approach for inflexion model.
Here paradigms and sub-paradigms are sets of terminations enlisted
into the indexed list L: Ni = {t1, t2, . . . , tni

} ∈ T . We use two oper-
ations from those listed above: adding a termination, and performing
root alternation.

Let us consider a scattered context grammar [2] rule:

[/]∗[#][N1]a1¬b1a2 . . . an−1¬bn−1an → a′1¬b1a
′
2 . . . a

′
n−1¬bn−1a

′
n[N2],

where ai, a
′
i are arbitrary words and either bi is a nonempty word, or

the special symbol ∗ stands instead of bi. N1, N2 are the termination
set indexes. The interpretation of this rule is as follows.

Let w be a word-lemma. Every sign / if any indicates cutting the
last letter from w. Word v obtained after the deletions is considered
as a root if N1 is not empty, and N1 is its index in the termination set
list L. In any case, the word v should have the form

f0a1f1a2f2 . . . an−1fn−1anfn,

where each fi is an arbitrary (possible empty) word, not containing (for
i = 1, 2, . . . , n − 1) the veto subword bi. If there exists more than one
representation of this kind, the first one should be selected scanning v

270

Word formation problems in Romanian . . .

from the left to the right, or vice versa if the sign # is present. The
special character ∗ instead of bi admits arbitrary fi.

In this context, the parallel substitution

a1, a2, . . . , an → a′1, a
′
2, . . . , a

′
n,

is produced, generating a new root v′ = f ′
0a

′
1f

′
1a

′
2f

′
2 . . . a

′
n−1f

′
n−1a

′
nf

′
n

and N2 is its termination set index in L.

So, in order to generate word-forms it is sufficient to interpret the
corresponding grammar rules [3, 4].

To apply this method of inflexion, we should know the morphologi-
cal group of the given word. See discussion and a partial solution in [3].
(An algorithm to determine the morphological group of an arbitrary
Romanian word using P systems can be found in [5].)

We developed 866 grammar rules and 320 ending sets that are suf-
ficient to formalize the inflexion process of productive parts of speech
for the Romanian language.

Obviously, for each ending we can establish a correspondence with
morphological characteristics of the word-form, thus obtaining a possi-
bility of morphological annotation.

Derivation. The particularities of the derivational morphology
mechanisms help in lexical resources extension without any semantic
information. The developed approaches and mechanisms were applied
to Romanian but they can be applicable to other languages [6].

Let Σ be an alphabet of natural language, V — set of vowels, C
– set of consonants, r ∈ RR — the root/stem, p ∈ Pref – prefix,
s ∈ T \ Suf – suffix, brackets [] indicate that the included morphem
in the paranthesis can be missing from the word structure. From the
analysis of the process of derivation we can infer the following rules of
modifications of derivatives:

1. [p]r = [p]r′v → [p]r′s , where v ∈ V , for example, răzbuna →

răzbun (a)ător, corresponds to r = răzbuna, r′ = răzbun, v′ = a, s =
{ator}.

2. [p]rs = [p]rls′ → [p]rs′ , where l ∈ L, for example, nărui →
nărui(e)ală, corresponds to r = nărui, s = eală, l = e, s′ = ală.

271

A. Alhazov et al.

3. [p]rs = [p]rl1l2s
′ → [p]rs′ , where l1, l2 ∈ L, for example,

ı̂ncleia → ı̂nclei(ea)ală, corresponds to r = ı̂ncleia, l1 = e, l2 = a,
s = eală and s′ = lă.

In general, the process of derivation can be presented as a set of
rules of the form:

α1β1α2β2 . . . αnβn → [p]α1β
′
1α2β

′
2 . . . αnβ′n[s],

where |αi| ≥ 0, |βi| ≥ 0, |β′
i| ≥ 0.

For example: dărima → dărimătură, the alternation a-ă; ceaţă →

ceţos, the alternation ea-e; contagios → contagioasă, the alternation
io-ioa.

Studies in derivation process allow us to conclude that we cannot
propose an effective general algorithm for automatic derivation but we
can highlight some models of derivation, for which construction of such
algorithms is possible. We will underline below the four most important
models of derivation.

Affixes substitution. Let x1 be a word of the form x1 = α1ω,
where α1 is a prefix. After the substitution α1 → α2 we obtain the word
x2 = α2ω, where x2 is the obtained derivative, for example, ı̂nchide-
deschide. The same for the derivatives x1 = ωβ1, with the suffixe
β1. After the substitution β1 → β2 we obtain the word x2 = ωβ2, for
example, corigenţă-corigent.

Derivatives projection. Let ω be a word, α – a prefix, β – a
suffix, then the following relations are valuable:

(ω → αω)
∧

(ω → ωβ) ⇒ (ω → αωβ), for example, (a lucra →

lucr(a)ător)
∧

(a lucra → a prelucra) ⇒ (a lucra → prelucr(a)ător);

(ω → αω)
∧

(ω → αωβ) ⇒ (ω → ωβ), for example, (a capit-
ula → capitulaţie)

∧

(a capitula → recapitulaţie) ⇒ (a capitula →

capitulaţie);

(ω → αωβ)
∧

(ω → ωβ) ⇒ (ω → αω), for example, (a centraliza
→ descentralizator)

∧

(a centraliza → centralizator) ⇒ (a centraliza →

descentraliza);

Formal derivational rules. For example, let an adjective be of
the form ω′ = ωβ, where β ∈ {-tor, -bil, -os, -at, -it, -ut,-ind, -̂ınd},

272

Word formation problems in Romanian . . .

as a result we will obtain the derivatives of the form ω′′ = neωβ, for
example, invidios → neinvidios.

Derivational constraints. These can be functions of the form:

f : {wrd, pos,mod, sla, fgw,mvca . . . } → derivative

where wrd is a word to derivate, pos − part of speech of wrd, mod

− model of derivation, sla − the set of letters to which the affix is
attached, fgw − flection group of wrd, mvca −modifications and vocalic
or consonant alternations. For example, f : { a spinteca, verb, des<
verb >, . . . , V14, double consonant avoiding } → de(s)spinteca.

As derivatives generation represents an overgenerating mechanism,
these derivational models implementation needs a level of validation [6],
in order to enrich existent digital lexicons.

Generation of derivatives is not a trivial problem, because the pro-
cess does not have a regular mechanism. Solution to store all deriva-
tives of a dictionary is a reasonable one, because these derivatives still
will not cover the full diversity of language, being in continuous evolu-
tion [7].

4 P systems with String Objects and Input

A membrane system, or P system, consists of nested membranes whose
regions contain multisets of objects. Objects evolve in a synchronous
and maximally parallel manner according to given evolution rules as-
sociated with membranes. See [8] for further details.

Let O be a finite set of elements called symbols, then the set of
words over O is denoted by O∗, and the empty word is denoted by λ.

A transitional P system with string-objects and input is a tuple

Π =
(

O,Σ, µ,M1, · · · ,Mp, R1, · · · , Rp, i0
)

,

where:
• O is the working alphabet of the system whose elements are called

objects.
• Σ ⊂ O is an input alphabet.

273

A. Alhazov et al.

• µ is a membrane structure (a rooted tree) consisting of p mem-
branes.

• Mi is an initial multiset of strings over O (see an exception below)
in region i, 1 ≤ i ≤ p.

• Ri is a finite set of rules defining the behavior of objects from O∗

in region i, 1 ≤ i ≤ p, as described below.
• i0 identifies the input region. Mi0 is restricted to the input al-

phabet Σ.
For our current purposes, the membrane structure is supposed to

be unchanged during computation.

In this paper we consider string rewriting with target indications.
A rule x → (y, tar) ∈ Ri can be applied to a string uxv in region i,
resulting in a string uyv in region specified by tar ∈ {inj | 1 ≤ j ≤

p} ∪ {here, out}. Rule x → (y, here) can be shortened to x → y.
We can also write rules of the type a → (u1, tar1)||(u2, tar2)|| · · ·

||(uk, tark) that transform any string of the form w1aw2 into the mul-
tiset of strings w1u1w2, w1u2w2, · · · , w1ukw2 and send the results in
the corresponding region.

We assume the following computation mode: whenever there are
multiple ways to apply different rules or the same rule to a string, all
possible results are produced. Each possible result is obtained from a
different copy of the string that is replicated, or assumed to be present
in sufficient number of copies to allow this.

The computation ends when no rule is applicable, and the strings
sent out form the result of the computation.

5 Inflection by P Systems

Given the set of word forms, an opened productive class assumes that
these words are identified by their inflection group [9]. The inflection
group is characterized by the set G = {α,RG, FG}, where |α| ≥ 0. α

is the ending that is reduced during inflection, FG is the set of the
lists of flectives presenting the inflexion paradigm, RG is the set of
the rules, which indicate vowel/consonant alternation of type a → u,
a ∈ Σ+, u ∈ Σ∗. A separate membrane system ΠG is developed for

274

Word formation problems in Romanian . . .

each inflexion group G.

We will investigate two cases: without alternations, and with vowel
and/or consonant alternation.

No alternation model. For any inflection group without alter-
nation G = (α, ∅, {f1G , f2G , · · · , fnG

}):

ΠG = (O,Σ, []1, ∅, R1, 1), where

O = Σ = {a, · · · , z,#} (extended Romanian alphabet),

R1 = {α# → (f1G , out)||(f2G , out)|| · · · ||(fnG
, out)}

If this system receives an input words w′α# belonging to the inflec-
tion group G, it sends all its word forms out of the system in one step.
Clearly, ΠG is non-cooperative if α = λ, but non-cooperativeness is too
restrictive in general, since the system would not be able in this case to
distinguish the termination to be reduced from any other occurrence
of α.

Model with alternations. Let G be an arbitrary inflection

group, with m − 1 alternations a1 = a
(1)

1
a
(1)

2
· · · a

(1)
n1

, · · · , am =

a
(m)

1
a
(m)

2
· · · a

(m)
nm

. Let the set of flectives consist of s subsets, and for

subset FkG = {f
(k)

1
, · · · , f

(k)
p1 }, 1 ≤ k ≤ s, the following alternations

occur: a1 → u
(k)

1
, · · · , am → u

(k)
m (the alternations are fictive for

k = 1), and
⋃s

k=1
FkG corresponds to a complete paradigm. For in-

stance, Example 2 corresponds to s = 2 sublists (singular and plural),
and m− 1 = 2 alternations.

The associated P system should perform the computation

w# =

m−1
∏

j=1

(wjaj)wmα# ⇒ ∗

⇒ ∗

m−1
∏

j=1

(

wju
(k)

j

)

wmfi
k
| 1 ≤ k ≤ s, fi

k
∈ F (k)

,

where u
(1)

j = aj, 1 ≤ j ≤ m.

275

A. Alhazov et al.

The system processes the first alternation at its leftmost occur-
rence, the second alternation at its leftmost occurrence which is to the
right of the first one, etc. More formally, our P system discovers the
representation of the input string as

∏m−1

j=1
(wjaj)wmα, where aj has

no other occurrences inside wjaj except as a suffix.
Theoretically, overlapping occurrences or occurrences with context

can be handled by rules with a longer left-hand side. A different order
of occurrences of the alternations can be handled by renumbering the
alternations. Should the specification of a group require, e.g., second-
leftmost occurrence for a → u, this can be handled by inserting a fictive
substitution a → a before a → u, etc.

We construct the following P system, which takes the input in the
form

#lw#r = #l

m−1
∏

j=1

(wjaj)wmα#r.

Π′′
G = (O,Σ, []1, ∅, R1, 1), where

Σ = V ∪ {#l,#r},

O = Σ ∪ E,

E = {Ak,j | 1 ≤ k ≤ s, 0 ≤ j ≤ m},

V = {a, · · · , z} is the Romanian alphabet,

and the rules are as follows:

R = {#l → A1,0|| · · · ||As,0} (1)

∪ {Ak,j−1γ → γAk,j−1 | γ ∈ V \ {a
(j)

1
},

1 ≤ k ≤ s, 1 ≤ j ≤ m} (2)

∪ {Ak,j−1a
(j)

1
vγ → a

(j)

1
Ak,j−1vγ | a

(j)

1
v ∈ Pref(aj),

|v| < |aj | − 1, γ ∈ V \ {a
(|v|+2)

1
}, 1 ≤ k ≤ s, 1 ≤ j ≤ m} (3)

∪ {Ak,j−1aj → u
(k)

j Ak,j | 1 ≤ k ≤ s, 1 ≤ j ≤ m} (4)

∪ {αAk,m#r → (f
(k)

1
, out)|| · · · ||(f (k)

pm
, out) | 1 ≤ k ≤ s}. (5)

276

Word formation problems in Romanian . . .

The rules are presented as a union of 5 sets. The rule in the first set
replicates the input to perform different inflections. The symbol Ak,j

is a marker that will move through the string. Its index k corresponds
to the inflection subset, while index j tells how many alternations have
been carried out so far.

The rules in the second set allow the marker to skip a letter if it
does not match the first letter needed for the current alternation.

The rules in the third set allow the marker to skip one letter if some
prefix of the needed subword is found, followed by a mismatch.

The rules in the fourth set carry out an alternation.

The last set of rules perform the replicative substitution of the
flectives.

This system halts in at most |w| + 2 steps.

6 Derivation and Parsing by P Systems

We proceed with parsing as the reverse process of the generation. For
each possible decomposition of the string, the system sends outside a
string, obtained from the input by erasing the endmarkers and insert-
ing hyphens (for technical reasons, letters in prefixes and suffixes are
marked, the reverse alternations are performed in both the termination
and the rest of the word, and the termination is moved to the left of
suffixes). In the notation below, we use ′ as a morphism: u′ is a string
obtained from u by priming all its letters.

We construct a P system that accepts words x provided by the
beginning and ending markers: $1x$2. We use an enumeration of ele-
ments of Op and T : Op = {o1, · · · , ok} and T = {t1, · · · , tn}. We recall
that elements oj , 1 ≤ j ≤ k are of the following forms: p, ŝ, t1 → t2 ,
and x → y, where p ∈ Pref, s ∈ Suf, t1, t2 ∈ T and x, y ∈ V ∗. We
also define a set W = Suf(M r) of suffixes of the mirror language of
M ; words from W may appear in angular brackets. This corresponds
to operations remaining to be undone at possible points of the parsing
process.

We suppose that the alternations are only allowed in the root of
the word, not in the prefixes or suffixes to be removed. We proceed as

277

A. Alhazov et al.

follows: all reverse alternations are replaced with the prime version of
the letters. Once the choice is made to stop performing the operations
(the string is in a region corresponding to its termination, and the
control symbol is removed), every letter can be unprimed, and then
the result is sent out if some word from RR is obtained between the
markers.

Π = (O,µ,Σ, w1, w2, wo1 , · · · , wo
k
, wt1 , · · · , wtn ,

R1, R2, Ro1 , · · · , Ro
k
, Rt1 , · · · , Rtn , i0 = 2),

O = V ∪ V ′ ∪ V ∪ ̂V ∪ T ∪Op ∪ {$1, $2,−}, V = {a, · · · , z},

V ′ = {a′, · · · , z′}, V = {a, · · · , z}, ̂V = {â, · · · , ẑ}, Σ = V ∪ {$1, $2},

µ = [[]2[]o1 · · · []o
k
[]t1 · · · []tn]1,

wi = λ, i ∈ {1, 2} ∪Op ∪ T,

R1 = {〈〉 → 〈w〉 | w ∈ M r} ∪ {〈o → (〈, ino) | o ∈ Op},

∪ {〈〉 t → (λ, int) | t ∈ T},

∪ {$1q − t$2 → (q − t, out) | qt ∈ RR, t ∈ T},

R2 = {t$2 → ($2〈〉 t , out) | t ∈ T},

Rp = {$1p → (p − $1, out)}, p ∈ Pref,

Rŝ = {s$2 → ($2 − ŝ, out)}, s ∈ Suf,

Rq = { t2 → (t1 , out)}, q = t1 → t2 , t1, t2 ∈ T.

Ra = {(z → x′, out) |′−1 (z) = y}, a = (x → y) ∈ A,

Rt = {a′ → a | a ∈ V } ∪ {$2 → (−t$2, out)}, t ∈ T.

The notation ′−1 means removing all primes from the letters of the
argument. Although it assumes an exponential number of rules with
respect to the size of a root alternation, this size is never too long.

7 Examples of Parsing Romanian Words

We start by illustrating the work of the last P system by an example
of a fragment of a computation, where Pref = {des}, RR = {praf},

278

Word formation problems in Romanian . . .

Suf = {ui,re}, T = {λ} and M = {(d e s), (a → ă)(û̂i), (r̂ê)}, and the
system processes input $1desprăfuire$2. For conciseness, we only list
the first evolution of the copies of the string leading to the output, using
the notation (string,region). (The other two are obtained if the prefix
des is marked before both suffixes or after one of them, yielding the
same results, while for technical reasons some strings remain blocked
in the system, not contributing to the result).

($1desprăfuire$2, 2) ⇒ ($1desprăfuire$2〈〉 λ , 1) ⇒

($1desprăfuire$2〈(r̂ê)〉 λ , 1) ⇒ ($1desprăfuire$2〈〉 λ , (r̂ê)) ⇒

($1desprăfui$2 − r̂ê〈〉 λ , 1) ⇒ ($1desprăfui$2 − r̂ê〈(û̂i)(a → ă)〉 λ , 1)
⇒

($1desprăfui$2 − r̂ê〈(a → ă)〉 λ , (û̂i) ⇒

($1desprăf$2 − û̂i− r̂ê〈(a → ă)〉 λ , 1)

⇒ ($1desprăf$2 − û̂i− r̂ê〈〉 λ , (a → ă) ⇒

($1despra
′f$2 − û̂i− r̂ê〈〉 λ , 1)

⇒ ($1despra
′f$2 − û̂i− r̂ê〈(d e s)〉 λ , 1) ⇒

($1despra
′f$2 − û̂i− r̂ê〈〉 λ , (d e s)) ⇒

(d e s− $1pra
′f$2 − û̂i− r̂ê〈〉 λ , 1)

⇒ (d e s− $1pra
′f$2 − û̂i− r̂ê, λ) ⇒ (d e s− $1praf$2 − û̂i− r̂ê, λ) ⇒

(d e s− $1praf-$2 − û̂i− r̂ê, 1) ⇒ (d e s−praf- -û̂i− r̂ê, 0).

By inspecting the examples, we have come to the conclusion that
a derivation step can include, in the worst case, a prefix, a suffix, two
root alternations and replacing a termination with another one. Some
of the above mentioned operations may be absent.

We should note that the division of a word into morphemes may
sometimes differ from the one commonly accepted in linguistics. How-
ever, this should not restrict the generality of the approach, and we did
so in order to simplify the explanation.

In the parsing process described above, we accounted for the pre-
fixes, suffixes, root alternations and the terminations. Romanian lan-
guage has 86 prefixes and approx. 600 suffixes [7]. Processing the dic-
tionary [10] (not claiming its comprehensiveness) let us distinguish the
following types of root alternations during the word derivation:

279

A. Alhazov et al.

• of vowels: a→ ă, a→ e, e→ ă, o→ u, ı̂→ i, ă→ e,
ea→ e, e→ ea, oa→ o, oa→ u, ia→ ie

• of consonants: t→ ţ, d→ z, h→ ş, z→ j, d→ j, t→ c, t→ ci

Note that, if desired, we can use the context information to refine
the scope of the the root alternation rules, e.g., if we only wanted to
perform the alternation a→ ă between letters t and r, we could write
this as a rule tar→ tăr, which does not affect the model at all.

The set of terminations that we use in our algorithm (set T) consists
of terminations for nouns and adjectives (ă, e, ea, a, i, ică, the empty
termination λ, u, o, a, l, iu, ui, iu, ie, uie) and those for verbs (a, ea,
e, i, ı̂).

We now proceed with some more examples of input and output, so
let us agree that

Pref ⊇ {im,̂ın,de,re,des},

RR ⊇ {pune,flori,flex,scrie,cicl,fac,tânăr,fată,mult,deştept,brad,praf},

Suf ⊇ {ere, are, ibil, re, ire, i, iţ, im, uţ, ui},

T ⊇ {λ, ă, e},

A ⊇ {â → i, ă → e, a → e, t → ţ, e → ea, a → ă},

M ⊇ {(̂ı m), (i n), (d e), (r e), (d e s), (êr̂ê), (âr̂ê), (̂îb̂îl), (r̂ê), (̂ir̂ê),

(â → i)(ă → e)(̂ın)(̂i), (a → e)(̂îţ), (t → ţ)(̂im̂), (λ → e)

(e → ea)(λ → ă), (a → ă)(û̂ţ), (a → ă)(û̂i)}.

Examples without root alternations: words $1̂ınflorire$2, $1flexibil$2,
$1descriere$2, $1reciclare$2, $1desfacere$2 (burst into blossom, flexi-
ble, description, recycling, disassembling) will yield output ı̂ n-flori--r̂ê,
flex--̂îb̂îl, d e-scrie--r̂ê, r e-cicl--âr̂ê, and d e s-fac-êr̂ê, respectively.

Examples with root alternations: words $1 ı̂ntineri$2, $1fetiţă$2,
$1mulţime$2, $1deşteaptă$2, $1brăduţ$2 and $1desprăfuire$2 (youthen,
little girl, multitude, dignified (fem.), small spruce, undusting) will
yield output ı̂n-tânăr--̂i, fat-ă-̂îţ, mulţ--̂im̂, deştept-, brad-û̂ţ, and d e s-
praf--û̂i− r̂ê, respectively.

280

Word formation problems in Romanian . . .

8 Conclusions

The paper discussed classical and P systems approaches used to word
formation in Romanian, namely, inflection and affixation of nouns, ad-
jectives, and verbs as most productive parts of speech.

The particularities of the derivational morphology mechanisms help
in lexical resources extension without semantic information. Studies
on derivation process allow us to conclude that we cannot propose
an effective algorithm for automatic derivation in general, but we can
highlight some models of derivation, for which construction of such
algorithms is possible.

In particular, we described a membrane parsing model taking into
account alternations in the root dependent of fixed prefixes and suf-
fixes. We may deduce that these models can be used not only for Ro-
manian but for other languages. These models can also be integrated
into another NLP applications to solve more complicated problems in
computer linguistics.

Acknowledgement

This work was partially supported by NATO.NUKR.SFPP 984877
“Modeling and Mitigation of Social Disasters Caused by Catastrophes
and Terrorism”.

References

[1] V. Macari, G. Magariu, T. Verlan. Simulator of P-Systems with

String Replication Developed in Framework of P-Lingua 2.1. Com-
puter Science Journal of Moldova, v. 18, Nr. 2(53), 2010, pp. 246–
268. – ISSN 1561–4042.

[2] Sh. Greibach, J. Hopcroft. Scattered context grammars. Journal of
Computer and System Sciences. V. 3, Issue 3, August 1969, pp.
233–247.

281

A. Alhazov et al.

[3] S. Cojocaru. The ascertainment of the inflexion models for Roma-

nian. Computer Science Journal of Moldova. 14, 1(40), 2006, pp.
103–112.

[4] E. Boian, C. Ciubotaru, S. Cojocaru, A. Colesnicov, L. Malahov,
M. Petic. Creation and Development of the Romanian Lexical Re-

sources. In: Proceedings of Recent Advances in Natural Language
Processing, Hissar, Bulgaria, September 11–14, 2011, pp. 678–685

[5] S. Cojocaru, E. Boian. Determination of inflexional group using P

systems. Computer Science Journal of Moldova. 2010, 18(1), pp.
70–81. ISSN 1561–4042.

[6] S. Cojocaru, E. Boian, M. Petic. Stages in Automatic Deriva-

tional Morphology Processing. In: Knowledge Engineering, Prin-
ciples and Techniques, KEPT2009, Cluj-Napoca University Press,
2009, pp. 97–104.

[7] M. Petic. Generative mechanisms of Romanian derivational mor-

phology. In: Memoirs of the Scientific Section of the Romanian
Academy, Series IV, Tome XXXIV, Bucureşti: Editura Academiei,
2011, pp. 21–30.

[8] Gh. Păun, G. Rozenberg, A. Salomaa. The Oxford Handbook of

Membrane Computing, Oxford University Press, 2010, pp. 118–
143.

[9] A. Lombard, C. Gâdei. Morphological Romanian Dictionary (Dic-

tionnaire morphologique de la langue roumaine). Bucureşti, Edi-
tura Academiei, 1981. – In French.

[10] S. Constantinescu. Dictionary of Derived Words, HERRA,
Bucharest, 2008. 288 pp. – In Romanian.

Artiom Alhazov, Constantin Ciubotaru, Received July 10, 2015

Svetlana Cojocaru, Alexandru Colesnicov,

Ludmila Malahov, Mircea Petic

Institute of Mathematics and Computer Science

Str. Academiei 5, Chişinău, MD-2028, Moldova

Phone: +373 22 72 59 82

E–mails: {artiom.alhazov,constantin.ciubotaru,svetlana.cojocaru,kae,mal,

mircea.petic}@math.md

282

Proeedings of the Workshop on Foundations of Informatis

FOI-2015, August 24-29, 2015, Chisinau, Republi of Moldova

Experiments on ross-language identity

resolution

∗

Zinaida Apanovih, Alexander Marhuk

Abstrat

This paper desribes approahes to the ross-language iden-

tity resolution problem that arises when the English datasets

are used to populate the ontent of Russian sholarly knowledge

bases. The goal is to assoiate personal entities with Russian

names, desribed in the Open Arhive of the Russian Aademy

of Sienes, with their publiations written in English. A new

approah ombining attribute-based identity resolution with the

textual analysis of publiations attributed to these entities has

been proposed. The dataset of the Open Arhive of the Russian

Aademy of Sienes and digital library SpringerLink are used as

test examples.

Keywords: Linked Open Data, ross-language identity res-

olution, tf-idf, LDA, Jaro-Winkler

1 Introdution

Name ambiguity in the ontext of bibliographi itation reords is a dif-

�ult problem that a�ets the quality of ontent in digital libraries. The

library ommunity has been working on it for a long time [1, 2℄. In the

ontext of Linked Open Data with the inreasing data tra� on a global

sale, the issues of data quality and on�dene have beome extremely

important. In this environment, errors are promulgated, dispersed, and

beome di�ult to disover and repair. As the number of homonyms

and synonyms inreases, it beomes ruial to have aurate data iden-

tifying various entities. An important aspet of this problem is multi-

lingualism. Multilingual resoures suh as DBPedia, VIAF, WorldCat,

©2015 by Zinaida Apanovih, Alexander Marhuk

∗
This work has been supported by the RFBR grant 14-07-00386.

283

Z. Apanovih, A. Marhuk

et., beome inreasingly ommon. When integrating data in di�erent

languages, it is neessary to solve the ross-language identity resolution

problem, in whih one data base is in English, and the seond one is

in Russian. Our experiments have shown that onventional methods of

identity resolution usually fail in the ross-language environment. Sev-

eral named entities with distint English spellings and translations of

their names may orrespond in reality to the same Russian entity; on

the other hand, several distint entities may be homonyms and share

the same name or some forms of this name. The idea of our approah is

to use text analysis methods in ombination with attribute-based meth-

ods for identity resolution. The dataset of the SB RAS Open Arhive

and digital library SpringerLink (http://link.springer.om) are used as

test examples.

2 Language-spei� aspets of identity resolu-

tion

One of the projets arried out at the A.P. Ershov Institute of In-

formatis Systems of the Siberian Branh of the Russian Aademy of

Sienes (IIS SB RAS) is aimed at populating the Open Arhive of the

Siberian Branh of the Russian Aademy of Sienes (SB RAS Open

Arhive, Open Arhive) [3℄ with the data of the Open Linked Data

loud (LOD) [4℄.

The problem is ompliated by the fat that the Open Arhive uses

names written in Cyrilli, and other data sets use Latin names to iden-

tify the same persons. Our reent experiments [5℄ have shown that this

problem has language spei� aspets beause sometimes a name in one

language an be obtained by translation or transliteration of the name

in another language.

Experiments with the RKBExplorer datasets (www.rkbexplorer.om)

have shown that a person of the Open Arhive has several mathes

in the RKBExplorer with di�erent spellings and these persons have

disjoint lists of their publiations. For example, the publiations au-

thored or edited by Aademiian Andrei Petrovih Ershov have been

284

Experiments on ross-language identity resolution

attributed to 18 distint persons whose names are Andrei P. Ershov,

A.P. Yersh'ov, A. Ershov, and A. Yershov in DBLP RKBExplorer. By

heking the DBLP Computer Siene Bibliography, the ounterpart

of RKB Explorer DBLP, three distint persons with publiations be-

longing to Aademiian Andrei Petrovih Ershov have been identi�ed.

Their names are various forms of the Latin transliteration of �Àíäðåé

Ïåòðîâè÷ Åðøîâ�.

Another example is VIAF, the Virtual International Authority File.

Its web interfae is available on http://viaf.org. The soure �les of

VIAF inlude some of the most arefully urated �les of the names

available. In addition, the bibliographi reords using the �les are pro-

fessionally reated, often reviewed and orreted by many libraries. In

spite of the substantial work put into the reation and maintenane of

the �les, they still have inauraies. For example, VIAF has attributed

several papers edited by or written by Aademiian A.P. Ershov to a

person identi�ed as http://viaf.org/viaf/196995053 and named Ershov,

Aleksandr Petrovih. On the other hand, among the publiations at-

tributed to Aademiian Andrei Petrovih Ershov there are two books

on eonomis (http://viaf.org/viaf/5347110), whih an hardly belong

to him.

Experiments with WorldCat.org have shown that this resoure, too,

is not free from identi�ation errors when Russian authors are onsid-

ered. For example, the list of WorldCat Identities,

(http://www.worldat.org/widentities/ln-n80162678),

ontaining desriptions of partiularly prominent personalities, has a

reord dediated to Aademiian Andrei Petrovih Ershov. It ontains

information about the books and papers authored or edited by Aa-

demiian A.P. Ershov mixed with the publiations authored by another

A.P. Ershov (Alexander Petrovih) from Novosibirsk. Besides, the ar-

tiles authored by Alexander Petrovih Ershov and published between

1989 and 2012 have been desribed as �publiations by Andrei Petro-

vih Ershov published posthumously� (Aademiian A.P. Ershov died

in 1988).

A well-known system for attribute-based identity resolution in the

ontext of the Open Linked Data is SILK [7℄. The heuristis used

285

Z. Apanovih, A. Marhuk

by VIAF and DBLP for ambiguity detetion are desribed in [8, 9℄.

Cross-language entity disambiguation requires taking into aount dif-

ferenes in orthography between languages and di�erenes in the way

these words in di�erent languages are used to express similar meanings.

The fous of this paper is on mathing the named entities whose English

names have been reated by a transliteration or translation of Russian

names.

Besides, now a large number of publiations are digitized, and a

most important attribute haraterizing eah researher is her or his

publiations. Nowadays, quite advaned methods of authorship attri-

bution exist, inluding analysis of harater, lexial, syntati, semanti

and appliation-dependent features [10-12℄. The use of these methods

is governed by the idea that authors unonsiously tend to use similar

lexial, syntati or semanti patterns. However, when omparing the

English texts published by Russian authors, harater, lexial, and syn-

tati methods do not seem to be the most appropriate beause di�erent

texts of the same author an be translated by di�erent translators who

vary in their translation styles. On the other hand, semanti analysis

of the texts an reveal, for example, their terminologial similarity.

Thus, we suggest a ombined use of artiles metadata omparison

and their text similarity estimation for the ross-language identity res-

olution. As a soure of detailed meta-data, the digital library Springer-

Link has been hosen along with full-texts of artiles. SpringerLink

is urrently one of the largest digital libraries that holds more than

9 000 000 douments in various �elds of researh: omputer siene and

mathematis, life sienes and materials, philosophy and psyhology.

Its wide range of �elds orresponds well to the multidisiplinary orien-

tation of the SB RAS Arhive. Besides, SpringerLink ontains the full

texts of many artiles. If the full text of a publiation is not available,

SpringerLink provides detailed meta-data about the publiation, suh

as ISSN, abstrat, the a�liations of its authors (if spei�ed in the text),

referenes et. Finally, SpringerLink is one of the soures used by a part

of the Open Linked Data loud WorldCat.org (http://worldat.org).

The ontent of the SB RAS Open Arhive provides various dou-

ments (photo douments mainly) re�eting information about people,

286

Experiments on ross-language identity resolution

researh organizations and major events that have taken plae in the

SB RAS sine 1957. The Open Arhive ontains information about the

employments, researh ahievements, state awards, titles, partiipation

in onferenes, aademi and soial events for eah person mentioned

in the Arhive. The Open Arhive has fats about 10 917 persons and

1519 organizations and events. The data sets of the Open Arhive are

available as an RDF triple store, as well as a Virtuoso endpoint for the

SB RAS Arhive. Its RDF triple store omprises about 600 000 RDF

triples. An example of data of the OpenArhive looks as follows:

<person rdf:about="piu_200809051791">

<name xml:lang="ru">Åðøîâ Àíäðåé Ïåòðîâè÷</name>

<name xml:lang="en">Yershov, Andrei Petrovih</name>

<from-date>1931-04-19</from-date>

<to-date>1988-12-08</to-date>

<sex>m</sex>

</person>

<partiipation rdf:about="w20070417_7_10747">

<partiipant rdf:resoure="piu_200809051791" />

<role-lassi�ation>basi</role-lassi�ation>

<in-org rdf:resoure="fog_pavlovskaya200812254335" />

<from-date>1976</from-date>

<to-date>1988</to-date>

<role xml:lang="ru">çàìåñòèòåëü çàâåäóþùåãî êà�åäðîé

âû÷èñëèòåëüíîé ìàòåìàòèêè ÌÌÔ</role>

</partiipation>

<org-sys rdf:about="fog_pavlovskaya200812254335">

<name xml:lang="ru">Íîâîñèáèðñêèé ãîñóäàðñòâåííûé

óíèâåðñèòåò</name>

<org-lassi�ation>organization</org-lassi�ation>

<from-date>1958-01-09</from-date>

</org-sys>

In the SB RAS Open Arhive, all persons are spei�ed by means

of a normalized name. The format of a normalized name is <Last-

Name, First Name Middle Name>. This attribute has two options: the

287

Z. Apanovih, A. Marhuk

Russian-language version and the English-language version. The En-

glish version is a transliteration of the Russian version. However, every

Russian name an be transliterated in many ways. For example, the

Russian family name Åðøîâ an be spelt as Ershov, Yershov, Jerszow,

and the �rst name Àíäðåé an be written as Andrei, Andrey, Andrew.

3 The algorithm for identity resolution

The general sheme of our algorithm is as follows:

1. Our program takes as input a string R_string, orresponding to

a Russian name from the Open Arhive and returns a set of all

possible English transliteration and forms variations E_strings.

E_strings an be generated either by Google translate or by our

transliteration program.

2. Eah generated string s ∈E_strings is used for key word searh

in SpringerLink. This searh results in a list of douments where

the key word an our in the title of artile, in the name of

organization, in the referene list, et. All the artiles are �l-

tered, and only publiations having one of the key words as the

author are retained. Eah artile is spei�ed by a unique iden-

ti�er. SpringerLink indexes several kinds of data formats (txt,

PDF, PNG). For our experiment, however, we onvert non-text

formats into text and make use of plain text �les. A set of meta-

data suh as itation_publisher, itation_title, itation_author,

itation_author_institution, et. are extrated and onatenated

to reate a text for analysis.

The authors of the list of artiles an be both homonyms and syn-

onyms. We have to proess the list of artiles and determine whih

of their authors are synonyms and whih of them are homonyms.

In other words, the list of artiles should be separated into subsets

S1, S2, Sn suh that eah subset of artiles is authored by a single

person and all his or her name variations are synonyms.

288

Experiments on ross-language identity resolution

3. The publiation date and authors' a�liation, provided by Springer-

Link are ompared with the person's list of a�liations spei-

�ed by the Open Arhive. Again, English names of organi-

zations should be ompared against their Russian ounterpart.

At this stage using transliteration is inappropriate, therefore

Google translate and viaf.org web �servies are used for gen-

erating the English variants of the Russian names of organiza-

tions. For example, �Èíñòèòóò Ñèñòåì Èí�îðìàòèêè� is identi-

�ed in VIAF as VIAF ID: 159616561 (Corporate). Permalink:

http://viaf.org/viaf/159616561. Its English name provided by

VIAF is �A.P. Ershov Institute of Informatis Systems�. If there is

no English ounterpart for the Russian name of an organization,

its Google translation is used.

4. To distinguish persons whose a�liations spei�ed in SpringerLink

oinide with these indiated in the Open Arhive, we generate

a matrix that measures pair wise similarity between stemmed af-

�liations (names of organizations). Cyli Jaro-Winkler distane

[13℄ is used as the measurement. Based on this omparison, the

whole list of artiles S is subdivided into three subsets P1, P2,

and P3, where P1 is a set of artiles whose a�liations are simi-

lar to one of the list of a�liations spei�ed for the given person

in the Open Arhive, P2 is a set of artiles whose a�liations are

not similar to any of the list of a�liations spei�ed by the Open

Arhive for the given person, and P3 is a set of artiles that have

no spei�ed a�liation for the onsidered author.

5. The program tries to distribute artiles without spei�ed a�li-

ations (P3) among the groups of publiations with spei�ed af-

�liations (P2). This proedure is based on the text similarity

of artiles. One of the most e�etive methods for the seman-

ti analysis of textual data is Latent Dirihlet Alloation with

Cullbak-Leibler divergeny [14℄. A simpler and omputationally

heaper alternative is to alulate doument similarity using the

tf-idf weighting with osine similarity. Before omputing the text

similarity, the text is leaned by removing stop words and leaving

289

Z. Apanovih, A. Marhuk

only plain ontent-arrying words, then a stemming proedure

[15℄ is applied. If the similarity value for an artile A is below

threshold for every group of artiles Group 1, . . . , Group N, the

program reates a new group NewgroupN+1, where N+1 is the

serial number of the newly reated group.

6. Some artiles of subsets P1 and P2 are spei�ed by general a�lia-

tion suh as �Russian Aademy of Siene�. The program tries to

distribute artiles with more general a�liations among the groups

of artiles with more spei� a�liations. For example, �Siberian

Division of Russian Aademy of Siene� is onsidered to be more

general with respet to �A.P. Ershov Institute of Informatis Sys-

tems Siberian Division of Russian Aademy of Siene�. More

general a�liation is a substring of a more spei� one. If the

author`s a�liation spei�ed in SpringerLink is onsidered to be

a general name of an organization, the program tries to deide

whih of the more spei� names of the organization an be used

as author's a�liation. Text similarity of the artiles from groups

with the exat names of organizations is used at this stage.

7. Text similarity measure is applied to ompare the generated

groups of artiles and if the similarity value for two groups of

artiles g1 and g2 exeeds the threshold value, the two groups are

merged into one.

8. The olletion of douments is treated as a graph. Eah doument

is a node identi�ed by its number in the list of douments and

every pair of douments is onneted by an edge whose weight

(W) is given by the similarity between the two douments. A

threshold is applied to the similarity matrix to ignore the links

between douments with low similarity. The threshold depends

on the number of nodes. For example, the threshold is equal

to 0.05 for 30 nodes. The obtained graph is drawn by a usual

fore-direted plaement algorithm so that similar douments are

plaed lose to eah other. In our ase, the fore of attration

and the repulsion fore both depend on the weight of the edge

290

Experiments on ross-language identity resolution

between verties.

Fore of attration= Temperature * SpringFore(d) * W * Spring-

ForeK;

Fore of repulsion = Temperature * EletriFore(d) / W * Ele-

triForeK;

SpringFore(d) = 2 * log(d),

EletriFore(d) = 1 / d2, where d is the distane, and W is the

similarity between two verties.

The result of the program is a set of SpringerLink artiles subdivided

into several groups. The �rst group of artiles is attributed to the person

desribed in the Open Arhive.

4 Results of experiments

Experiments have shown that name variations generated by our pro-

gram were more appropriate than that of Google translate. For

example, 408 English variants have been generated by our pro-

gram for the Russian name �Âàëåðèé Àëåêñàíäðîâè÷ Íåïîìíÿùèé,�

among whih only �ve variations have been disovered in Springer-

link: V.A. Nepomnyashhii, Valery Nepomniashy, V.A. Nepomniashy,

Valery A. Nepomniashy, V.A. Nepomnyashy. Google Translate has

reated 160 variants of the same name but some name variations exist-

ing in SpringerLink were absent from Google translate results. For ex-

ample, the name variation �V. A. Nepomnyashy� existing in Springer-

Link was generated by our program but was not generated by Google

Translate.

A weak point of Google Translate was that along with the translit-

eration of names, it generated their translations. For example, Google

translate generated variants like �Valery oblivious� for the Russian

name �Âàëåðèé Íåïîìíÿùèé�, and �Vadim ats� for the Russian name

�Âàäèì Êîòîâ�.

An example of the program, searhing for the artiles authored by

the Russian person �Â.À. Íåïîìíÿùèé� in the digital library Springer-

Link is shown in Fig.1. English variations of a Russian personal name

291

Z. Apanovih, A. Marhuk

Figure 1. A plaement of several artiles attributed to the person named

as Íåïîìíÿùèé, Âàëåðèé Àëåêñàíäðîâè÷ in the Open Arhive. Ar-

tiles with spei�ed a�liation are shown in a lighter olor

are displayed in the upper left tab. English versions of a�liations for

the given person are displayed in the middle left tab. In the enter, a

graph representing the publiations attributed by the algorithm to the

person from the Open Arhive is shown. Eah node of the graph or-

responds to an artile of the SpringerLink digital library. Light nodes

orrespond to the artiles with a spei�ed a�liation and dark nodes

represent artiles without a spei�ed a�liation. The total of 45 publi-

ations have been found for the �ÂÀ Íåïîìíÿùèé� query. There were

15 papers belonging to a person named as V. A. Nepomnyashhii, 3 pa-

pers belonging to a person named as Valery Nepomniashy, 23 papers

belonging to a person named V. A. Nepomniashy, 3 papers belonging

to a person named as Valery A. Nepomniashy, and 1 paper belonging

292

Experiments on ross-language identity resolution

to V. A. Nepomnyashy. All these papers were written by two real

persons. The �rst person (desribed in the Open Arhive) has used all

the above variants of his name inluding V. A. Nepomnyashhii, and

the seond person has always named himself as V. A. Nepomnyashhii.

The program has orretly identi�ed 37 publiations authored by Valery

Nepomniashy from the Open Arhive but the publiations of two of

his homonyms were plaed in distint groups.

5 Conlusion

The program has been tested on a test sample of 100 persons employed

by the IIS SB RAS (about 3,000 publiations) and on the artiles au-

thored by Aademiian A.P. Ershov. To verify this approah, we have

ompared the data extrated from the SpringerLink digital library with

the data of the Aademiian A. Ershov's arhive and the digital library

eLIBRARY.RU. Regarding the SpringerLink artiles, a signi�ant vari-

ation in the amount of available texts is deteted (from a few lines to a

few dozens of pages), whih signi�antly a�ets the auray of identi-

�ation. About eighty perent of the analyzed artiles in SpringerLink

had no information on the full names of their authors (only short forms

were given) and approximately seventy perent of author's a�liations

have been provided. Nevertheless, a joint omparison of attributes and

text similarities have shown good auray, lose to 93 perent.

Referenes

[1℄ Anderson A. Ferreira, Maros Andr�e Gon�alves, Alberto H. F.

Laender Disambiguating Author Names in Large Bibliographi

Repositories. In: International Conferene on Digital Libraries,

New Delhi, India, 2013.

[2℄ Yang Song, Jian Huang, Isaa G. Counill, Jia Li C. Lee Giles. Ef-

�ient Topi-based Unsupervised Name Disambiguation. Proeed-

ings of the 7th ACM/IEEE-CS joint onferene on Digital libraries,

2007, pp. 342�351.

293

Z. Apanovih, A. Marhuk

[3℄ A.G. Marhuk, P.A. Marhuk. Spei� features of digital libraries

onstrution with linked ontent. Pro. of the RCDL'2010 Conf. �

2010. pp. 19�23. (In Russian).

[4℄ A. Shultz et al. How to integrate LINKED DATA into your

appliation //Semanti tehnology & Business Conferene,

San Franiso, June 5, 2012. http://mes-semantis.om/wp-

ontent/uploads/2012/09/Beker-etal-LDIF SemTehSanFran-

iso.pdf.

[5℄ Z.V. Apanovih, A.G. Marhuk. Experiments on using the LOD

loud datasets to enrih the ontent of a sienti� knowledge

base. P.Klinov and D.Mouromtsev (Eds.) KESW 2013, CCIS 394,

Springer Verlag Berlin Heidelberg 2013, pp. 1�14.

[6℄ C. J. Godby, R. Denenberg. Common Ground: Ex-

ploring Compatibilities Between the Linked Data

Models of the Library of Congress and OCLC.

http://www.ol.org/researh/publiations/2015/olresearh-

lo-linked-data-2015.html.

[7℄ R. Isele, A. Jentzsh, Ch. Bizer. Silk Server � Adding missing Links

while onsuming Linked Data. 1st International Workshop on Con-

suming Linked Data (COLD 2010), Shanghai, November 2010.

[8℄ M. Ley. DBLP - Some Lessons Learned. PVLDB 2(2), 2009, pp.

1493�1500.

[9℄ T. B. Hikey, J. A. Toves. Managing Ambiguity In VIAF. D-

Lib Magazine 20 (July/August), 2014. doi:10.1045/july2014-

hikey.http://www.dlib.org/dlib/july14/hikey/07hikey.html.

[10℄ E. Stamatatos. A survey of modern authorship attribution meth-

ods. Journal of the Amerian Soiety for Information Siene and

Tehnology. 60(3), pp. 538�556, 2009.

[11℄ A.A. Rogov, Yu. Vl. Sidorov. Statistial and Information-

alulating Support of the Authorship Attribution of the Literary

Works. Computer Data Analysis and Modeling: Robustness and

Computer Intensive Methods: Pro. of the Sixth International

294

Experiments on ross-language identity resolution

Conferene (September 10-14, 2001, Minsk). Vol.2: K-S/ Edited

by Prof. Dr. S. Aivazian, Prof. Dr. Yu. Kharin and Prof. Dr. H.

Rieder. Minsk: BSU, 2001, pp. 187�192.

[12℄ O. Kukushkina, A. Polikarpov, D. Khmelev. Using literal and

grammatial statistis for authorship attribution. Probl. of Info.

Trans. 37(2), pp. 172�184, 2001.

[13℄ W. W. Cohen, P. D. Ravikumar, S. E. Fienberg. A Comparison

of String Distane Metris for Name-Mathing Tasks. IIWeb 2003,

pp. 73�78.

[14℄ D. M. Blei, A. Ng, M. Jordan. Latent Dirihlet alloation Journal

of Mahine Learning Researh. (3) 2003, pp. 993�1022.

[15℄ M. Steyvers, T. Gri�ths. Probabilisti Topi Models Handbook of

Latent Semanti Analysis. 2007.

[16℄ http://www.odeprojet.om/Artiles/12098/Term-frequeny-

Inverse-doument-frequeny-implemen

[17℄ http://snowball.tartarus.org/

Zinaida Apanovih, Alexander Marhuk, Reeived July 9, 2015

Zinaida Apanovih

1) A.P. Ershov Institute of Informatis Systems, Siberian Branh of the Russian

Aademy of Sienes

6, Aad. Lavrentjev pr., Novosibirsk 630090, Russia

Phone: +7 383 3308652

E�mail: apanovih�iis.nsk.su

2) Novosibirsk State University

630090, Novosibirsk-90, 2 Pirogova Str.

Alexander Marhuk

1) A.P. Ershov Institute of Informatis Systems, Siberian Branh of the Russian

Aademy of Sienes

6, Aad. Lavrentjev pr., Novosibirsk 630090, Russia

Phone: +7 383 3308652

E�mail: mag�iis.nsk.su

2) Novosibirsk State University

630090, Novosibirsk-90, 2 Pirogova Str.

295

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Contrastive diachronic study on Romanian

language

Daniela Gı̂fu

Abstract

The paper describes a study based on diachronic exploration
of Romanian texts in order to implement a technology for detect-
ing automatically the morpho-lexical features from 1840 to nowa-
days. The aim of this survey is to analyse the morphology and
lexical-semantics of Romanian language, based on a few Roma-
nian and Moldavian resources, and an algorithm to explain how
the language evolved. We investigated the use of a lexicon-based
and a learning-based approach to identify morpho-syntactic and
semantic items to reconstruct the general trends in the Roma-
nian language evolution. The study is meant to help linguists,
specialists and non-specialists in NLP.

Keywords: diachronic, lexicon, morphology, lexical-semantic,
language model.

1 Introduction

This survey is based on diachronic exploration of Romanian texts in or-
der to implement a technology for detecting automatically the morpho-
lexical features from 1840 to nowadays. The aim of this work is to
investigate the linguistic crisis that affects the multilingual Republic
of Moldova in parallel with the Romanian language, using natural lan-
guage processing (NLP) methodology for tracking diachronic changes
in the 19th century.

In this case, the methodology relied on part-of-speech (POS) tag-
ging, often with manual post-editing. Most previous works (e.g. Leech

c©2015 by D. Gı̂fu

296

Contrastive diachronic study on Romanian language

et al., 2009; Davies, 2013) has focused mainly on the linguistic inter-
pretation of the results.

We cannot imagine the human thinking without a system of signs.
Thinking is dependent on the meanings and concepts that are organized
as a sign interpreter. The linguistic sign is an unmotivated conventional
connection between a signifier (sound or graphic body of a word) and
a signified concept (i.e. mental representation of an object) (Saussure,
F. de, 1971: p. 99), a concept (Morris, 1971: 19), that is not a real
object (Vasiliu, 1995: 13).

Ch. S. Peirce (Peirce, 1990: 133) considers that the sign has a
ternary structure. He established a relationship between a real object
or concept and an interpreter, which is the effect that the sign has on
the receiver, representing the image of the object induced in his / her
consciousness. In fact, according to Peirce, the sign will have an infinite
number of interpreters that approximate more accurately the meaning
of the sign.

Our research is based on the premise that the semantics refers to

those types of signs, which are artificially or naturally organized in

language.

This paper is structured as follows: section 2 presents some ap-
proaches for lexical semantics. Section 3 proposes a specific method-
ology for research of language using language technology, and section
4, the conclusions section emphasizes the importance of computational
tools for analysis of contrastive diachronic studies on the Romanian
language and directions for future work.

2 Background

Since mutual replacement in a context is a criterion for perfect syn-
onymy, a recent study develops an automated method of aligning para-
phrases contexts to detect synonymy (Grigonyt et al., 2010). Scientists
show preoccupations to add derivative links to the WordNet and their
comparison in more languages (Gala et Mititelu, 2013). Iftene and
Balahur (Iftene and Balahur, 2007) used WordNet (Fellbaum, 1998) to
look up synonyms for a word and try to map them to nodes from the

297

D. Gı̂fu

text tree.

Another important approach for lexical semantics is nocuous ambi-
guity which occurs when a linguistic expression is interpreted in differ-
ent ways by readers in a context. A study made by Hui Yang (Yang, H.
et al. 2010) presents a method to automatically identify ambiguity or
harmful substance, which is likely to lead to misunderstandings. The
model is built on a learning machine architecture which learns from a
set of heuristics. These heuristics predict a factor that can make the
reader to favor one interpretation.

Regarding the current trends in assessing the performance of the
systems to eliminate the ambiguity in the meanings of words oriented to
application, Lefever et Hoste built a multilingual reference data set for
a multilingual disambiguation of meanings. The data set was created
for a sample of 25 lexical nouns in English, for which translations were
recovered in 5 languages, especially in Dutch, German, French, Italian
and Spanish. (Lefever et Hoste, 2010). Tufiş, also proposed a method
for the automatic recognition of the different meanings of polysemantic
words (Tufiş, 2002).

Numerous studies relate to implementation of semantic annotations
of various types. Garcia and colleagues (Garcia et al., 2012) present the
methodology and the results of the analysis of terms related to verbs or
nouns processing in a corpus of specialized texts dealing with ceramics.
This method is useful in distinguishing the different meanings of the
same verb.

In a recent article (Eckle-Kohler et al. 2012) solutions are sought
for compatibility of different formats of resources. UBY-LMF LMF
is a model based on the large-scale lexical-semantic heterogeneous re-
sources in multiple languages. UBY-LMF allows standardization LSRS
to a level of fine grain lexical information by using a large number of
data and the categories from ISOC. UBY-LMF was evaluated by trans-
forming LSRS in two languages of WordNet format in English. Hetero-
geneous resources are: Wiktionary, Wikipedia, OmegaWiki, FrameNet,
VerbNet. German Wikipedia, GermaNet.

Preocupations in the direction of reconstructing a diachronic mor-
phology for Romania already exist (Cristea et al., 2012). They are

298

Contrastive diachronic study on Romanian language

based on the digital version of the Romanian Language Thesaurus
Dictionary (eDTLR) (Cristea et al, 2007), the most important lexi-
cal resource. The authors detected the old form words occurring in
the citations. This report presents a diachronic text classification, an-
other important issue in NLP literature, (Mihalcea and Năstase, 2012;
Popescu and Strapparava, 2015) in order to evaluate approaches to-
ward diachronic text analysis of a two corpora of Romanian language
from Romania and Republic of Moldova.

3 Work Methodology

In this section we describe the sequence of operations for processing
texts of the Romanian language (published in Romania and in the
Republic of Moldova) and we show how methods for automatic classi-
fication of unstructured data, the WEKA classifiers, can be used.

3.1 Corpus

The corpus used to support the work described in this report con-
sists of two novels, published in Romania and Moldova before 1900s:
“Alexandru Lăpuşneanu” (1840), by Costantin Negruzzi, and “Polidor
and Hariti” (1843), by the equerry Dimitrie Balica. Note that the text
was written in Cyrillic, then transcribed in Latin (Marşalcovschi et al.,
2012), but the transliteration from Cyrillic in Latin is not on interest
in this paper.

3.2 Pre-processing

The Romanian automatic pre-processing chain applied on raw texts of
the book consists of the following tasks, executed in sequence: segmen-
tation, tokenization, lemmatization, and part-of-speech (POS) tagging,
described below.

First, it was necessary to extract both texts from PDF1, and we
removed the footnotes and the symbol ”u”, which has only a phonetic

1http://online2pdf.com – free services

299

D. Gı̂fu

role).
Ex. 1: ianu patru partu => ian patr part

Ex.2: dacoromanomoldavu => dacoromanomoldav

Ex.3: oarua => oara

(A) Segmentation (splitting the text in sentences).

(B) Tokenization (demarcates words or word components, but also
numbers, punctuation marks, abbreviations, etc.).

(C) Lemmatization (determines lemmas of words).
(D) Part-of-speech tagging (identifies POS categories and morpho-

syntactic information of tokens).
Note that the tokenization, lemmatization and POS tagging are

realized in one step, using http://nlptools.infoiasi.ro/WebPosRo/.
(E) To obtain the XML format of each text, the free service

http://wsdlbrowser.com was used. Because, the web service has prob-
lems with the symbols ,,<” and ,,>”, they have also been removed from
the text.

(F) To remove the unknown words from each XML, we applied a
few regular expressions to get a list of unfamiliar words, separated by
commas:

Extracting of words that are labeled ,,NotInDict” from XML files:

a. Replacing .*NotInDict.*?>(.*)<.* with $1

b. Replacing <.* with ,,”

Removing of extra spaces: replacing ”\s+”” with ” ”, and duplicate
words in Javascript.

For example, here is a XML fragment for each novel:

(1) “Polidor and Hariti” contains 26972 words and 2771 unknown
words.

For instance: mai ianti acistu al mieu... <?xml version="1.0"

encoding="UTF-8" standalone="no" ?>

<POS Output>

<S> ...

300

Contrastive diachronic study on Romanian language

<W LEMMA="mai" MSD="Rg" POS="ADVERB" id="null.242"

offset="1323">mai</W>

<W Case="direct" Definiteness="no" EXTRA="NotInDict"

Gender="masculine" LEMMA="ianti" MSD="Afpmprn"

Number="plural" POS="ADJECTIVE" id="null.243"

offset="1327">ianti</W>

<W Case="direct" Definiteness="no" EXTRA="NotInDict"

Gender="masculine" LEMMA="acistu" MSD="Afpmsrn"

Number="singular" POS="ADJECTIVE" id="null.244"

offset="1334">acistu</W>

<W Case="direct" Gender="masculine" LEMMA="al"

MSD="Tsmsr" Number="singular" POS="ARTICLE"

Type="possessive" id="null.245"

offset="1341">al</W>

<W EXTRA="NotInDict" LEMMA="mieu" MSD="Y"

POS="ABBREVIATION" id="null.246"

offset="1344">mieu</W>

...

< /S>

< /POS Output>

(2) “Alexandru Lăpuşneanu” contains 7894 words and 173 unknown
words.

For instance: O gvardie numeroasă de lefecii albanezi, . . .

<W Case="direct" Gender="feminine" LEMMA="un"

MSD="Tifsr" Number="singular" POS="ARTICLE"

Type="indefinite" id="null.1613"

offset="7713">O</W>

<W Case="direct" Definiteness="no" EXTRA="NotInDict"

Gender="feminine" LEMMA="gvardie" MSD="Ncfsrn"

Number="singular" POS="NOUN" Type="common"

id="null.1614" offset="7715">gvardie</W>

301

D. Gı̂fu

<W Case="direct" Definiteness="no" Gender="feminine"

LEMMA="numeros" MSD="Afpfsrn" Number="singular"

POS="ADJECTIVE" id="null.1615"

offset="7723">numeroas</W>

<W LEMMA="de" MSD="Sp" POS="ADPOSITION"

id="null.1616" offset="7733">de</W>

<W Case="direct" Definiteness="no" EXTRA="NotInDict"

Gender="feminine" LEMMA="lefecii" MSD="Ncfprn"

Number="plural" POS="NOUN" Type="common"

id="null.1617" offset="7736">lefecii</W>

<W Case="direct" Definiteness="no" Gender="masculine"

LEMMA="albanez" MSD="Afpmprn" Number="plural"

POS="ADJECTIVE" id="null.1618"

offset="7744">albanezi</W>

...

< /S>

< /POS Output>

(G) Extracting the proper nouns from each XML in order to im-
prove NER (Name Entity Recognition) with old person names / topon-
ims. Actually, since 2014, NER is improving with the Geonames lists
(Sălăvăstru and Gı̂fu, 2015).

Here is one example for each novel, where it is shown the new
attribute OLD MDV=”TRUE” for each old toponim/person name ex-
tracted from texts of the Republic of Moldova:

(1) “Polidor and Hariti” contains 257 nouns, which have the first
capital letter. After the manual verification, the list of proper
nouns contains 89 (a few proper nouns appear inflected).

For instance:

<ENTITY TYPE="LOCATION" SUBTYPE="TOWN"

OLD MDV="TRUE"/> Bălţălor</ENTITY>

302

Contrastive diachronic study on Romanian language

Note, Bălţi (here, Bălţălor) is a town from the Republic of
Moldova.

(2) “Alexandru Lăpuşneanu” contains 24 nouns, which have the first
letter capitalised. After the manual verification, the list of proper
nouns contains 13 of them (two proper nouns appear inflected).
We include a new attribute OLD RO=”TRUE” for each old to-
ponim / person name extracted from texts of Romania.

Some examples:

<ENTITY TYPE="LOCATION" SUBTYPE="COUNTRY"

OLD RO="TRUE"/> Valahia</ENTITY>

4 WEKA Statistics

Because these novels have different dimensions, here we take a sam-
ple from “Polidor and Hariti” with an equal number of unknown
words (UN) (173, the number which was extracted from “Alexandru
Lăpuşneanu”). Below, it is presented this corpus:

Table 1. Unknown words in the testing corpus resulted automatically
and manually

“Polidor and Hariti” “Alexandru

Lăpuşneanu”

Total

words

Automatically Manually Total

words

Automatically Manually

Unknown

words

% UN % Unknown

words

% UN %

653 173 26.49% 168 25.73% 7894 173 2.19% 171 2.17

1. Those two lists of unknown words were edited in Notepad ++
and then saved as TXT. The TXT format was changed in CSV
format, file type supported by WEKA.

303

D. Gı̂fu

Here is a sample file which contains unknown words arranged by
period of time and the place.

Period, Words

< 1900 RO,vreu

< 1900 RO,perdut

...

< 1900 Bessarabia, ı̂ntaia

< 1900 Bessarabia, gravure

2. CSV file will be processed by WEKA (Waikato Environment for

Knowledge Analysis).

Figure 1. Work session – Näıve Bayes classifier in WEKA

3. In this paper a type of classifications is presented.

304

Contrastive diachronic study on Romanian language

a. before 1900, “Alexandru Lăpuşneanu” for Romania and a
sample from “Polidor and Hariti” for Bessarabia.

b. From the XML corpora, the attributes LEMMA, POS and
MSD were extracted using a Perl script.

4. In this report, it was preferred the Näıve Bayes classifier (see
Fig. 1).

Above is a sample output (173 instances) for a Näıve Bayes clas-
sifier, using 10-fold cross-validation. It could be explained as
follows:

So the percentages and raw numbers add up,

aa + bb = 115 + 0 = 115

ab + ba = 58 + 0 = 58

The percentage of correctly classified instances is often called
accuracy or sample accuracy.

correctly classified instances = 66,47%

Kappa is a chance-corrected measure of agreement between the
classifications and the true classes.

kappa = 0

Note that a classifier is doing better than chance if the kappa
value is greater than 0.

The error rates are used for numeric prediction rather than clas-
sification. In numeric prediction, predictions aren’t just right or
wrong, the error has a magnitude, and these measures reflect
that.

Mean absolute error = 0.41

Root mean squared error = 0.44

Relative absolute error = 93.59%

Root relative squared error = 93.93%

305

D. Gı̂fu

(1) For <1900 RO

TP Rate = 1, being the rate of true positives (instances cor-
rectly classified as a <1900 RO class).

FP Rate = 1, being the rate of false positives (instances
falsely classified as a <1900 RO class).

P = 0.66, being the proportion of instances that are truly
of a <1900 RO class divided by the total instances classified
as that class.

R = 1, being the proportion of instances classified as a
<1900 RO class divided by the actual total in that class
(equivalent to TP rate).

F-Measure = 2 * Precision * Recall / (Precision +

Recall) = 0.79, being the harmonic average

(2) For <1900 Bessarabia

TP Rate = 0

FP Rate = 0

P = 0

R = 0

F-Measure = 0

In both cases, ROC = 0.72

Note that ROC indicator is considered being one of the most
important values output by Weka. An optimal classifier will have
ROC area values approaching 1, with 0.5 being comparable to
”random guessing” (similar to a Kappa statistic of 0).

No. Label Count

1 < 1900 RO 57

2 < 1900 Bessarabia 58

Total instances 115

306

Contrastive diachronic study on Romanian language

5. The lines from CSV file were mixed. Before that, those two lists
resulted automatically were manually corrected: 2 attributes (Pe-
riod & Words).

The Näıve Bayes results are:

Above is a sample output for a Näıve Bayes classifier, using 10-
fold cross-validation. It could be explained as follows:

Here there were 115 instances.

So the percentages and raw numbers add up,

correctly classified instances = 47,82%

kappa = -0.04

Mean absolute error = 0.50

Root mean squared error = 0.50

Relative absolute error = 99.98%

Root relative squared error = 99.98%

(1) For <1900 RO

TP Rate = 0.26

FP Rate = 10.31

P = 0.45

R = 0.26

F-Measure = 0.33

(2) For <1900 Bessarabia

TP Rate = 0.69

FP Rate = 0 .73

P = 0.48

R = 0.69

F-Measure = 0.57

In both cases, ROC = 0.46

307

D. Gı̂fu

5 Conclusions and discussions

So far, the proportion of unknown words, for the period before 1900,
reflects that the influence of other languages (e.g. Russian) on the
Moldavian language is more obvious (a strong connection between lin-
guistic and national identities) than of Romania. The vocabulary, the
phoneme and the structure of Balica’s work did not meet the literary
norms already existent in Romania. In Bessarabia occupied by Rus-
sians in 1812 and then annexed to the Tsarist Empire, the educated
literature in Romanian was missing. Only Culrescu tempted to write
a story about outlaws (Pushkin, who was here in exile, praised this
subject). The population from here practiced a typological rural style
of Romanian language and folk literary traditions.

References

[1] Cristea, D., Simionescu, D., Haja, G. (2012). Reconstructing the
Diachronic Morphology of Romanian from Dictionary Citations.
In Proceedings of LREC-2012, Istanbul, 21-25 May.

[2] Cristea, D., Răschip, M., Forăscu, C., Haja, G., Florescu, C.,
Aldea, B., Dănilă, E. (2007). The Digital Form of the Thesaurus

Dictionary of the Romanian Language. In Proceedings of SpeD
2007 Speech Technology and Human - Computer Dialogue, Iaşi,
May 10-12, 2007.

[3] Davies, M. (2013). Recent shifts with three non-finite verbal com-

plements in English: Data from the 100-million-word Time corpus

(1920s-2000s). In: Aarts, Close, Leech and Wallis (eds.) The verb
phrase in English: Investigating recent linguistic change with cor-
pora, Cambridge: Cambridge University Press. pp. 46–67.

[4] Eckle-Kohler, J., Gurevych, I., Hartmann, S., Matuschek, M. et
Meyer, C. M. (2012). UBY-LMF – A Uniform Model for Stan-

dardizing Heterogeneous Lexical-Semantic Resources in ISO-LMF

in Proceedings of LREC 2012, p. 275–282.

308

Contrastive diachronic study on Romanian language

[5] Fellbaum, C. et al. (1998). WordNet: An Electronic Lexical

Database. MIT Press, Cambridge, Mass.

[6] Gala, N. et Barbu-Mititelu, V. (2013). Lex-Rom: un réseau lex-

ical pour les familles morphologiques dans les langues romanes,

Congrès international de Linguistique et Philologie Romanes,
Nancy.

[7] Garćıa, N. M., L’Homme, M. C., Alcina, A. (2012). Semantic Re-
lations Established by Specialized Processes Expressed by Nouns
and Verbs: Identification in a Corpus by means of syntactico-
semantic Annotation in Proceedings of LREC 2012, pp. 3814–
3819.

[8] Grigonyt, G., Cordeiro, J., Dias, G. et Moraliyski, R., (2010),
Paraphrase Alignment for Synonym Evidence Discovery, in
Colling, Beijing, China vol. 2, pp. 403–410.

[9] Iftene, A. And Balahur-Dobrescu, A. (2007). Hypothesis Trans-
formation and Semantic Variability Rules Used in Recognizing
Textual Entailment. In Proceedings of the Workshop on Textual
Entailment and Paraphrasing, Prague, pp. 125–130.

[10] Leech, G., Hundt, M., Mair, C. and Smith, N. (2009). Change in

Contemporary English: A Grammatical Study. Cambridge: Cam-
bridge University Press.

[11] Lefever, E., Hoste, V. (2010). Construction of a Benchmark Data
Set for Cross-lingualWord Sense Disambiguation in Proceedings of
LREC, 2010, pp. 1584–1590.

[12] Marşalcovschi, T.-T., Abramciuc, M., and Harconiţa, E. (2012).
Manuscrise by the equerry Dimitrie Balica, Bălţi.

[13] Mihalcea, R. and Nstase, V. (2012). Word epoch disambiguation:

Finding how words change over time. In Proceedings of ACL 2012.

[14] Morris, Ch. (1971). Writings on the General Theory of Signs, The
Hague, Paris, Mouton.

309

D. Gı̂fu

[15] Peirce, Ch. S. (1990). Semnificaţie şi acţiune, Bucureşti, Ed. Hu-
manitas.

[16] Popescu, O. and Strapparava, C. (2015). Semeval-2015 task 7:
Diachronic text evaluation. In Proceedings of SemEval 2015.

[17] Saussure, F. de (1971). Cours de linguistique générale, Ediţia a
III-a, Paris, Payot.

[18] Sălăvăstru, A. and Gı̂fu, D. (2015). Annotating Geographical En-
tities at the 16th International Conference on Intelligent Text

Processing and Computational Linguistics (CICLing 2015), 14-20
Apr. 2015, Cairo, Egypt.

[19] Tufiş, D. (2002). Dezambiguizarea semantic automat ı̂n corpusuri
paralele. In Limba Român ı̂n Societatea Informaţională – Soci-
etatea Cunoaşterii, Ed. Expert, Tufiş, D., Filip, F. Gh. (coord.),
pp. 237–270.

[20] Vasiliu, Em. (1995). Elemente de filosofie a limbajului, Bucureşti,
Editura Academiei.

[21] Yang, H., Roeck, A., Willis, A., Nuseibeh, B. (2010). A Method-

ology for Automatic Identification of Nocuous Ambiguity in Pro-
ceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010), vol. 2, pp. 1218–1226.

Daniela Ĝıfu1,2 , Received July 12, 2015

1 Faculty of Computer Science, “Alexandru Ioan Cuza” University of Iaşi
2 Center for Advanced Research in Applied Informatics,

University of Craiova

E–mail: daniela.gifu@info.uaic.ro

310

Part 9

Cryptography

and security

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

About Vigenere cipher modifications

Eugene Kuznetsov

Abstract

The aim of this work is a modification of the classical Vigenere
cipher, in order to improve the statistical properties of the cipher-
text obtained after operation. The work deals with the (third)
modification of the classic Vigenere cipher. Classic code is mod-
ified to a state in which it can already be implemented and an-
alyzed. The necessary information from the theory of algebraic
systems (fields, near-fields, groups, quasigroups, Latin squares,
orthogonal tables etc.) is provided. Using the properties of these
algebraic systems the modification of the cipher is constructed
and studied.

Keywords: Vigenere cipher, quasigroup, orthogonal tables.

1 Introduction

This work is dedicated to one of the most important aspects of informa-
tion security software – encryption methods. There are many reliable
encryption algorithms now, but most of them have a significant draw-
back – low speed of work. In this paper the famous Vigenere cipher
will be discussed. The mere cipher is not of interest today, because
there are simple hacking methods. But the principles laid down in
it, potentially allow us to create quick and at the same time robust
ciphers.

The aim of this work is a modification of the classical Vigenere
cipher, in order to improve the statistical properties of the cipher-text
obtained after operation. The basis of modification of the classic cipher
is an encryption method by bigrams. Its essence lies in the fact that the
original message is divided into pairs and each pair of symbols according

c©2015 by E. Kuznetsov

312

About Vigenere cipher modifications

to a certain law (special sequence table or tables) is encrypted in some
other pair of symbols.

The work deals with the (third) modification of the classic Vigenere
cipher. Classic code is modified to a state in which it can already
be implemented and analyzed. The necessary information from the
theory of algebraic systems (fields, near-fields, groups, quasigroups,
Latin squares, orthogonal tables etc.) is provided below. Using the
properties of these algebraic systems the modification of the cipher is
constructed and studied. Actually, these tables are a ”chip” method,
so they are paid a lot of attention.

2 Modified Vigenere cipher.

2.1 Polyalphabetic ciphers, Vigenere cipher.

Vigenere cipher is a multi-alphabet advanced encryption system. The
idea of the cipher is to use as the key the text of an unencrypted message
or an encrypted text. This cipher Vigenere described in his book ”A
Treatise of ciphers.” In its simplest form the basis of the table was
taken Trithemius table which subsequently dubbed as the Vigenere’s
table.

Vigenere’s table consists of the alphabet shifted cyclically to the
left by one character, but other permutations are available too. Addi-
tionally, the first line may be a randomly mixed alphabet.

The encryption process is as follows: plain text (which must be en-
crypted) is written in a line with no spaces. Next, you must determine
the key. Vigenere proposed to use as a key the plain text itself, adding
to the top of the key a random selected symbol. But as a key it is
possible to use any other sequence of characters equal in length to the
plaintext.

To produce the cipher-text we take the first letter of the plaintext
as an index row in a table Vigenere and standing beneath the letter
– as a column. At the intersection of the pair of tables write out the
character of the cipher-text. Then repeat these steps for each of the
remaining characters.

313

E. Kuznetsov

In order to decrypt the plaintext, you must know the cipher-text
and the key. Take the first letter of the key, define the corresponding
column in the Vigenere’s table and run through it from top to bottom,
until you meet the first character of the cipher-text. Once the desired
character is met, we write a letter indicating this line, so we get the
first character of the plaintext. We do the same steps for the remaining
characters of the key and the cipher-text.

In practice, in the programming of the encryption algorithm it is not
necessary to have the Vigenere’s table in memory, since the encryption
algorithm can be represented by some algebraic formula based on such
specific algebraic structures, as a field, near-field, orthogonal pair etc.

2.2 Algebraic concepts.

Hacking classic Vigenere’s cipher strongly relies on the presence of a
codeword and its length. Therefore, if we save (slightly modified) an
encryption method by bigrams, but to refuse from the code word, then
the usual method of hacking will not act.

Definition 1. Latin square of order n is a square table n×n, where

each row and each column contains numbers from 1 to n, and each

number is found exactly once.

Definition 2. The system 〈G, ·〉 is called a quasigroup if the following

properties hold:

1. ”·” is a binary operation defined on the set G;

2. Each of the equations x · a = b and a · x = b has exactly one

solution in G for any a, b ∈ G.

From the algebraic viewpoint Latin square is a ”multiplication ta-
ble” of a quasigroup.

Definition 3. A table of order n is called a selector if it satisfies one

of the following conditions: x · y = x or x · y = y . In the first case the

selector is called a right selector, in the second case – the left selector.

314

About Vigenere cipher modifications

If we take an arbitrary Latin square and a selector of corresponding
dimension, the resulting pair of tables will have the property of orthog-
onality. That is, upon imposition of one of them to another, we obtain
a table of pairs of symbols in which each pair of symbols appears ex-
actly once. Algebraically this orthogonal property is described by the
following definition.

Definition 4. Two operations 〈Q, ·〉 and 〈Q, ◦〉 on the same set Q are

called orthogonal (or forming an orthogonal pair) if the following

system
{

x · y = a,

x ◦ y = b,

has exactly one solution in Q for any a, b ∈ Q.

Definition 5. A near-field is a set Q with two binary operations

”+” (addition) and ”·” (multiplication) defined on it, satisfying the

following axioms:

1. 〈Q,+〉 is a commutative group;

2. (a · b) · c = a · (b · c) for all elements a, b, c ∈ Q;

3. (a+ b) · c = a · c+ b · c for all elements a, b, c ∈ Q;

4. The set Q contains an element 1 such that 1 · a = a · 1 = a for

every element a ∈ Q;

5. For each non-zero element a ∈ Q there exists an element a−1

such that a · a−1 = 1 = a−1 · a.

Definition 6. If in the near-field Q the multiplication operation ”·” is

commutative (a ·b = b ·a), then the resulting near-field is called a field.

From the history of orthogonal Latin squares the following method
of constructing a sufficiently large set of mutually orthogonal squares
of order n is known (but only when n = pk, where p is a prime number,
and k is a positive integer).

315

E. Kuznetsov

Let 〈Q,+, ·, 0, 1〉 be a near-field of order n. For any a ∈ Q we define

a new operation x
a
· y by the formula:

x
a
· y = a · x+ (1− a) · y.

This operation has the following properties:

1. x
a
· y is a quasigroup, if a 6= 0, 1;

2. Operations x
a
· y and x

b
· y are orthogonal for any a 6= b.

Let the operations ”+” and ”·” are set; then for the generation of
orthogonal (n× n)-tables we can use the formula

xij = a · i+ (1− a) · j,

where i, j ∈ {0, 1, ..., n − 1}, and a ∈ {2, ..., n − 1}.

2.3 Procedures for encryption and decryption.

The encryption procedure by bigrams is similar to the encryption pro-
cess of the classical Vigenere’s cipher, only the first bigram symbol
is taken from the first table and the second bigram symbol is taken
from the second table (instead of a key sequence, as it was done in
the classic Vigenere’s cipher). In other words, if we take the table of
pairs resulting in the superposition of two orthogonal tables mentioned
above, then the plaintext bigram (x, y) corresponds to the encryption
bigram (a, b), which is located at the intersection of the x-th row and
y-th column. This procedure is repeated sequentially for all bigrams of
the encrypted text.

Latin square in the algorithm described above can be changed to
another Latin square. Orthogonality with the selector remains, and the
encryption procedure does not change. The sequence of these squares
(or its generation by any algebraic method) is defined by the secret
key (or by periodic key sequence). It is easy to see that the statistical
hacking algorithms stop working when the number of squares becomes
substantially greater than 2.

316

About Vigenere cipher modifications

It is easy to notice that the second character of bigram always
remains the same after the procedure encryption. This may facilitate
the probable hacking of this cipher. To avoid this we must use another
Latin square (or (n× n)-table) instead of the selector. It is important
only that these two (n × n)-tables will be orthogonal.

To eliminate hack statistical methods it can be used several dif-
ferent tables instead of a single one. Then it is obvious that if more
different tables to be used, then statistics of a source text will be vio-
lated stronger. The effect will be exactly the same as the increase in
the length of a code phrase in the classic Vigenere’s cipher.

References

[1] D. Kahn. The First 3,000 Years // The Codebreakers – The Story

of Secret Writing. — New York: Charles Scribner’s Sons, 1967,
473 p.

[2] S. Singh. The Evolution of Secret Writing // The Code Book –

The Secret History of Codes & Code-breaking. – London: Forth
Estate, 2000, pp. 3–14.

[3] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone. Handbook of Ap-

plied Cryptography, 2002.

[4] E. Kuznetsov, S. Novoseltsev. A modification of Vijener’s cipher

by the methods of non-associativity algebra. – ASADE-2007, Ab-
stracts, Chisinau, August 21-23, 2007, 86.

Eugene Kuznetsov Received July 12, 2015

Eugene Kuznetsov

Institution: Institute of Mathematics and Computer Science, Academy of Sciences,

MOLDOVA

Address: MD-2028, Academiei str., 5, Chisinau, MOLDOVA

Phone: (373) 022 738029

E–mail: kuznet1964@mail.ru

317

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Stream Deniable-Encryption Algorithm

Satisfying Criterion of the Computational

Indistinguishability from Probabilistic Ciphering

A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

Abstract

It is proposed a method for stream deniable encryption of
secret message, which is computationally indistinguishable from
the probabilistic encryption of some fake message. The method
uses generation of two key streams with some secure block cipher.
One of the key streams is generated depending on the secret key
and the other one is generated depending on the fake key. The key
streams are mixed with the secret and fake data streams so that
the output ciphertext looks like the ciphertext produced by some
probabilistic encryption algorithm applied to the fake message
with using the fake key. When the receiver or/and sender of
the ciphertext are coerced to open the encryption key and the
source message, they open the fake key and the fake message.
To disclose their lie the coercer should demonstrate possibility
of the alternative decryption of the ciphertext, however this is a
computationally hard problem.

Keywords: cryptology, algorithm, stream, deniable, encryp-
tion

1 Introduction

The notion of deniable encryption (DE) was introduced by Canetti et
al. in 1997 [1] as property of cryptographic protocols and algorithms
to resist the so called coercive attacks that are performed by some ad-
versary (coercer) that intercepts the ciphertext and has power to force

c©2015 by A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

318

Stream Deniable-Encryption Algorithm

sender or/and receiver to open both the sent message and the encryp-
tion key. If the sender encrypts the secrete message using public key
of the receiver of the message, then we have the case of the public-key
deniable encryption schemes. If the encryption of the secrete message
is performed using a shared secret key, then we have the case of the
shared-key deniable encryption schemes.

The public-key DE protocols are applicable for preventing vote
buying in the internet-voting systems [2] and for providing security
of multiparty computations [3]. The shared-key DE algorithms repre-
sent interest for information protection in computer and telecommuni-
cation systems. In the literature there are considered sender-deniable
[1,2] (coercer attacks the sender of the ciphertext), receiver-deniable
[3] (coercer attacks the receiver of the ciphertext), and bi-deniable [4]
(coercer attacks the both parties of the secure communication session)
cryptoschemes. The encryption scheme is deniable, if it provides possi-
bility to the sender or/and to the receiver to open a fake message and
a fake key instead of the secret ones so that disclosing their lie is a
computationally infeasible problem for the coercer. Practical methods
for bi-deniable public-key encryption have been proposed in [5,6].

Fast methods for block deniable encryption are described in [7].
Those methods implement deniable encryption as simultaneous trans-
formation of two different messages, secret and fake ones, using two
keys, secret and fake ones, into the single ciphertext. In the paper
[7] it has been also introduced the notion of the computational indis-
tinguishability of the DE from the probabilistic encryption. The DE
algorithm is considered as possessing such property, if it produces the
ciphertext that can be also produced by some probabilistic-encryption
algorithm used for ciphering the fake message with the fake key and
some random input. The stream DE algorithms proposed in [7] and
[8] are indistinguishable from some probabilistic encryption algorithms,
however those algorithms are very slow. At present no practical and
fast algorithms for shared-key stream DE are described in the literature,
such algorithms are very attractive for practical application to provide
information protection in computer and telecommunication systems
though.

319

A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

The present paper proposes a method and algorithm for sufficiently
fast stream bi-deniable encryption. Computational indistinguishabil-
ity from a probabilistic stream encryption is used as a design criterion.
The paper is organized as follows. Section 2 presents the design cri-
teria. Section 3 and 4 present method and algorithm for stream bi-
deniable encryption, correspondingly. Section 5 discusses the proposed
algorithm. Section 6 concludes the paper.

2 Design criteria

For designing a shared-key DE algorithm the following criteria have
been used:

- the algorithm should implement the stream encryption;

- the used encryption method should provide possibility of the in-
dependent decryption of each symbol of the produced ciphertext; this
criterion takes into account possible practical applications in the cloud-
computing technologies for processing data contained in encrypted files
having large size;

- the method should implement the DE procedure as simultaneous
encryption of the secret and fake messages using the secret and fake
keys;

- the output ciphertext generated by the algorithm should be com-
putationally indistinguishable from the ciphertext produced by some
probabilistic ciphering a fake message with a fake key;

- the algorithm should provide sufficiently high encryption speed;

- the algorithm should provide bi-deniability;

- one should provide possibility of the independent recovering of the
secret and fake messages, using secret or fake key, correspondingly.

3 Encryption method

One can consider the text files as sequence of small data blocks having
the fixed size, i.e. as sequence of the bit strings with which the sym-
bols are coded. Thus, for encrypting a file or a message it is possible

320

Stream Deniable-Encryption Algorithm

to apply formally the fast bi-deniable block-encryption method pro-
posed in [7]. To encrypt a secret message T = (T1, T2, . . . , Ti, . . . , Tn)
represented as sequence of the b-bit data blocks Ti (b = 32, 64, 128,
or 256) in that method it is supposed to generate a fake message
M = (M1,M2, . . . ,Mi, . . . ,Mn), where Mi are the b-bit data blocks,
having the same size as secret one and then to encrypt simultaneously
all pairs of the data blocks Ti and Mi (i = 1, 2, . . . , n) as follows:

1. Using some known secure block cipher with b-bit input data block
encrypt the data block Mi into the b-bit block CMi

of intermediate
ciphertext in accordance with the formula

CMi
= EK(Mi), (1)

where E is the used block cipher; K is the fake key.
2. Encrypt the data block Ti into the b-bit block CTi

of intermediate
ciphertext in accordance with the formula

CTi
= EQ(Ti), (2)

where Q is the secret key.
3. Compute the ith (2b)-bit block of the output ciphertext Ci as

(2b)-bit binary polynomial satisfying the system of congruences
{

Ci ≡ CMi
mod µ(x)

Ci ≡ CTi
mod λ(x),

(3)

where binary polynomial µ(x) = 1||µ′(x), || denotes the concatenation
operation; µ′(x) is the binary polynomial, which is given by the right
b bits of the fake key K (i.e. the right b bits of the secret key K are
interpreted as binary polynomial); binary polynomial λ(x) = 1||λ′(x);
λ′(x) is the binary polynomial, which is given by the right b bits of the
secret key Q.

In the method described in [7] the keys K and Q are generated
as a pair of random bit strings such that polynomials µ′(x) and λ′(x)
are mutually irreducible, therefore the last system of congruences has
unique solution Ci < λ(x)µ(x) and can be computed as follows:

Ci = [CMi
λ(x)(λ−1(x) mod µ(x))+

+ CTi
µ(x)(µ−1(x) mod λ(x))] mod µ(x)λ(x).

321

A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

In the case of small values of the data blocks the described method is
insecure, for example, in the case of simultaneous encryption of the files
T = (t1, t2, . . . , ti, . . . , tn) and M = (m1,m2, . . . ,mi, . . . ,mn), where ti
and mi are symbols having size b ≤ 16 bits. To overcome this problem
we propose to modify the key for each value i = 1, 2, . . . , n. Due to
such modification it becomes possible to simplify computation of the
blocks CMi

and CTi
, if the sequences of the modified values of the

fake and secret key are generated in the form of some pseudorandom
sequence that is computationally indistinguishable from the uniform
random sequence. Besides, we propose to use unique fake and secret
key sequences for encryption of each secret message T . Thus, we have
come to idea to generate fake (Γ) and secret (Γ′) key sequences using
the block cipher E in accordance with the following formulas

EK(i||V) mod 22b = (αi||βi) andEQ(i||V) mod 22b = (α′
i||β

′
i),

where αi, βi, α
′
i, and β′

i are b-bit strings such that binary polynomials
µi(x) = 1||βi and λi(x) = 1||β′

i are mutually irreducible; V is the 64-bit
initialization vector generated at random for each encrypted message
or file (the value V is not secret, therefore V can be transmitted via
insecure channel).

The sequences Γ and Γ′ can be written as follows:

Γ = {(α1||β1), (α2||β2), . . . , (αi||βi), . . . , (αn||βn)} and

Γ′ = {(α′
1||β

′
1), (α

′
2||β

′
2), . . . , (α

′
i||β

′
i), . . . , (α

′
n||β

′
n)}.

The elements (αi||βi) and (α′
i||β

′
i) of these sequences are to be used

to encrypt simultaneously the couple of symbols ti and mi. Instead of
formulas (1) and (2) one can use the following transformation of the
ith symbol of the fake and secret messages, respectively:

cmi
= mi ⊕ αi (4)

cti = ti ⊕ α′
i, (5)

where ⊕ is the XOR operation. The b-bit symbols cmi
and cti of the

intermediate ciphertext are to be mixed into the single (2b)-bit symbol

322

Stream Deniable-Encryption Algorithm

ci of the output ciphertext in accordance with the following formula

ci = [cmi
λi(x)(λ

−1

i (x) mod µi(x))+

+ ctiµi(x)(µ
−1

i (x) mod λi(x))] mod µi(x)λi(x),
(6)

where µi(x) = 1||βi and λi(x) = 1||β′ are mutually irreducible binary
polynomials. Formula (6) defines solution of the following system of
congruences

{

ci ≡ cmi
mod µi(x)

ci ≡ cti mod λi(x).
(7)

System (7) defines the following formulas for computing the symbols
cmi

and cti from ci:

cmi
= ci mod µi(x), (8)

cti = ci mod λi(x). (9)

Then the ith symbols ti and mi of the source texts T and M are
computed using the values αi and α′

i with the following formulas (i =
1, 2, . . . , n):

mi = cmi
⊕ αi, (10)

ti = cti ⊕ α′
i. (11)

4 The stream deniable encryption algorithm

Suppose we have a secure block cipher E with 128-bit input data block
and 128-bit keyK. Using the method described in Section 3 (in which it
is supposed two parties of the communication session share the secret
128-bit key Q and the fake 128-bit key K) we have constructed the
following algorithm for performing the stream DE of the secret message
T :

INPUT: the secret message T = (t1, t2, . . . , ti, . . . , tn) and encryp-
tion keys K and Q.

1. Generate a fake message M having the same length as the mes-
sage T .

323

A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

2. Generate a random value of the 64-bit initialization vector V .
3. For i = 1 to n do the following steps.
3.1. Using the procedure Form αβ generate the ith elements

(αi||βi) and (α′
i||β

′
i) of the key sequences Γ and Γ′.

3.2. Compute the b-bit symbols cmi
and cti of the intermediate

ciphertext using formulas (4) and (5).
3.3. Compute the (2b)-bit symbol ci of the output ciphertext as

solution of the system of two linear congruences (7), which is defined
by formula (6).

4. Compose the output ciphertext C = (c1, c2, . . . , ci, . . . , cn).

OUTPUT: the ciphertext C = (c1, c2, . . . , ci, . . . , cn) and the ini-
tialization vector V .

The procedure Form αβ used at step 3 is described as follows:
INPUT: two 128-bit keys K and Q and two 64-bit values i and V .
1. Compute the value (αi||βi) = EK(i||V) mod 22b, where E is

some specified 128-bit block cipher; αi and βi are b-bit strings; the
value EK(i||V) is considered as binary number.

2. Compose the bit string µi = (1||βi).
3. Compute the value (α′

i||β
′
i) = EQ(i||V) mod 22b.

4. Compose the bit string λi = (1||β′
i).

5. Considering the bit strings µi and λi as binary polynomials µi(x)
and λi(x) of the degree b, respectively, compute the greatest common
divisor D = gcd(µi(x), λi(x)).

6. If D 6= 1, then increment β′
i ← β′

i+1 mod 2b (here the bit string
β′
i is considered as binary number) and go to step 4, otherwise STOP.

OUTPUT: two (2b)-bit elements (αi||βi) and (α′
i||β

′
i) of the key

sequences Γ and Γ′.
Decryption of the ciphertext C produced by the proposed DE al-

gorithm requires using the value V assigned to C (i.e. sent together
with the ciphertext C) and both the secret and fake keys and is to be
performed with the following algorithm.

Algorithm for decrypting the secret message.
INPUT: the ciphertext C = (c1, c2, . . . , ci, . . . , cn), the encryption

key Q, the fake key K, and the initialization vector V .
1 For i = 1 to n do the following steps.

324

Stream Deniable-Encryption Algorithm

1.1. Using the procedureForm αβ generate the ith element (α′
i||β

′
i)

of the key sequence Γ′.

1.2. Compute the b-bit symbol cti of the intermediate ciphertext
using the formula (9).

1.3. Compute the b-bit symbol ti of the secret message using for-
mula (11).

2. Compose the message T = (t1, t2, . . . , ti, . . . , tn).

OUTPUT: the opened message T .

5 Discussion

5.1 Security against the two-side coercive attack

Suppose a coercive adversary intercepts the ciphertext and initializa-
tion vector sent by sender to receiver of secret message and then forces
both the parties to open the message, the encryption and decryption al-
gorithms, and the encryption key. The encryption algorithm proposed
in Section 4 resists this attack, since the sender and the receiver are
able to fulfill coercers demands without opening the secret message.
For this purpose they open the following

- the fake key K declared as the secret one;

- the fake message M declared as the secret one;

- probabilistic encryption algorithm that allegedly produced the
ciphertext intercepted by the coercer;

- decryption algorithm that discloses the fake message from the
cryptogram, while using the fake key.

To catch them in a lie, the coercer should show conclusively that
the ciphertext contains another message. The last can be performed
with guessing the secret key Q, however this method is impractical due
to sufficiently large size of the value Q (128 bits).

Let us also consider the known-plaintext attack, i.e. suppose the
coercer knows the secret message. If he will be able to compute the
secret key Q, then he will be able to prove the sender and the receiver
are cheating (the proving consists in opening the message T from the
ciphertext C, while using the key Q). Suppose additionally that, using

325

A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

the known message T and the value V , the coercer is able to compute
the key sequence Γ′ and then all values EK(i||V), where i = 1, 2, . . . , n
(see step 3 in description of the procedure Form αβ).

In this case the assumption about possibility to compute the key Q

from the known 128-bit input i||V and output values EK(i||V) leads
to conclusion about insecurity of the used block cipher E against the
known-plaintext attack. However in the proposed DE algorithm it is
used a secure block cipher, for example, AES that surely resists such
attacks and is recommended by the standard ISO/IET 18033-3:2010
[9].

Thus, one can conclude the proposed DE algorithm provides bi-
deniability. The probabilistic encryption algorithm to be opened to
the coercer is described as follows.

Associated probabilistic stream encryption algorithm

INPUT: the message M = (m1,m2, . . . ,mi, . . . ,mn) and the en-
cryption key K.

1. Generate a random value of the 64-bit initialization vector V .

2. For i = 1 to n do the following steps.

2.1. Compute the value (αi||βi) = EK(i||V) mod 22b, where E is
the specified 128-bit block cipher; αi and βi are b-bit strings; the value
EK(i||V) is considered as binary number.

2.2. Compose the bit string µi = (1||βi).

2.3. Generate randomly two b-bit strings ρ and η′.

2.4. Compose the bit string η = (1||η′).

2.5. Considering the bit strings µi and η as binary polynomials
µi(x) and η(x) of the degree b, respectively, compute the greatest com-
mon divisor D = gcd(µi(x), η(x)).

2.6. If D 6= 1, then increment η′ ← η′ + 1 mod 2b (here the bit
string η′ is considered as binary number) and go to step 2.4, otherwise
go to step 2.7.

2.7. Compute the b-bit symbol cmi
of the intermediate ciphertext

using formula (4).

326

Stream Deniable-Encryption Algorithm

2.8. Compute the (2b)-bit symbol ci as solution of the following
system of two linear congruences:

{

ci ≡ cmi
mod µi(x)

ci ≡ ρ(x) mod η(x),
(12)

where the bit string cmi
is considered as binary polynomial and ρ(x) is

the binary polynomial represented by the bit string ρ.
3. Compose the output ciphertext C = (c1, c2, . . . , ci, . . . , cn).

OUTPUT: the ciphertext C = (c1, c2, . . . , ci, . . . , cn) and the initial-
ization vector V .

The value ci at step 2.8 can be computed using the following for-
mula:

ci = [cmi
η(x)(η−1(x) mod µi(x))+

+ ρ(x)µi(x)(µ
−1

i (x) mod η(x))] mod µi(x)η(x).

It is easy to see that for each symbol ci of the ciphertext C there
exist different bit strings η′ and ρ satisfying system (12). Indeed, for
given ci and arbitrary η′ such that gcd(µi(x), η(x)) = 1 the value ρ

satisfying (12) can be computed as binary polynomial ρ(x) = ci mod
η(x), where the bit string ci is considered as binary polynomial.

Thus, while using the encryption key K the associated probabilistic
encryption algorithm can potentially encrypt the message M into the
cryptogram C produced by the DE algorithm. Since it is computa-
tionally difficult to prove that the ciphertext C was produced by the
DE process, but not by the probabilistic encryption, one can say the
proposed DE algorithm is computationally indistinguishable from the
associated probabilistic encryption algorithm.

The decryption algorithm to be opened to the coercer is described
as follows.

Dishonest decryption algorithm

INPUT: the ciphertext C = (c1, c2, . . . , ci, . . . , cn), the encryption
key K, and the initialization vector V .

327

A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

1 For i = 1 to n do the following steps.

1.1. Compute the value (αi||βi) = EK(i||V) mod 22b.

1.2. Compose the bit string µi = (1||βi).

1.3. Compute the b-bit symbol cmi
of the intermediate ciphertext

using the formula (8).

1.4. Compute the b-bit symbol mi using the formula (10).

2. Compose the message M = (m1,m2, . . . ,mi, . . . ,mn).

OUTPUT: the opened message M .

5.2 Estimation of the encryption speed

For comparing the performance of the proposed algorithm with the
stream DE algorithm described in [7] one can roughly assume that
time complexity of computation of the value ci in accordance with the
formula (6) is equal to the time complexity of one block encryption
operation. Besides, the time complexity of generation of the values
(αi||βi) = EK(i||V) mod 22b and (α′

i||β
′
i) = EQ(i||V) mod 22b is ap-

proximately equal to 1 and 2 block-encryption operations, correspond-
ingly.

Thus, the time complexity of the encryption of one symbol of the
secret message is equal to ≈ 4 block-encryption operations. Taking the
last into account one can get the following formula for the encryption
speed of the proposed algorithm:

S =
1

4
·

b

128
SE, (13)

where b is the bit length of the symbols with which the secret message
is written; SE is the encryption speed of the block cipher E.

While implementing the DE method from [7] with using the block
cipher E, encryption of one symbol of the secret message takes on
the average 22b+1 operations of the block encryption and defines the
following formula for estimating the speed

S[7] =
b

128
·

SE

22b+1
. (14)

328

Stream Deniable-Encryption Algorithm

Comparing (13) with (14) one can state that the proposed stream DE
algorithm is significantly faster (by 22b−1 times) than algorithm by
method [7]. For example, in the case b = 8 the ratio S/SE is equal to
215.

6 Conclusion

It is proposed a method and algorithm for fast stream deniable en-
cryption satisfying criterion of the computational indistinguishability
from the stream probabilistic encryption. It has been shown that the
DE algorithm resists two-side coercive attack. As compared with the
stream DE algorithm presented in [7] the proposed one is significantly
faster, the algorithm from [7] has one interesting advantage though.
The advantage consists in using the same decryption algorithm for
opening both the secret and the fake messages from the ciphertext.
Such property is significant for providing security against coercive at-
tacks combined with measuring duration of the decryption process. In
our future research we plan to develop a fast stream DE method with
the same algorithm that decrypts the secret and fake message.

References

[1] R. Canetti, C. Dwork, M. Naor, R. Ostrovsky. Deniable Encryp-

tion. Proceedings Advances in Cryptology – CRYPTO 1997. Lec-
tute Notes in Computer Science. Springer - Verlag. Berlin, Heidel-
berg, New York, 1997. Vol. 1294. pp. 90–104.

[2] J. Howlader, S. Basu. Sender-Side Public Key Deniable Encryp-

tion Scheme. Advances in Recent Technologies in Communication
and Computing. Proceedings of the ARTCom ’09 International
Conference. 2009. pp. 9-13. (DOI: 10.1109/ARTCom.2009.107)

[3] Bo Meng, Jiang Qing Wang. A Receiver Deniable Encryption

Scheme. Proceedings of the 2009 International Symposium on In-
formation Processing (ISIP09). Huangshan, P. R. China, August
21-23, 2009. pp. 254–257.

[4] A. O’Neil, C. Peikert, B. Waters. Bi-Deniable Public-Key Encryp-

tion. Advances in Cryptology CRYPTO 2011. Lectute Notes in

329

A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

Computer Science. Springer Verlag. Berlin, Heidelberg, New York,
2011. Vol. 6841. pp. 525–542.

[5] A.A. Moldovyan, N.A. Moldovyan. Practical Method for Bi-

Deniable Public-Key Encryption. Quasigroups and related sys-
tems. 2014. Vol. 22. P. 277–282.

[6] A. A. Moldovyan, N. A. Moldovyan, V. A. Shcherbacov. Bi-

Deniable Public-Key Encryption Protocol Secure Against Active

Coercive Adversary. Buletinul Academiei de Stiinte a Republicii
Moldova. Matematica. 2014. N. 3 (76). P. 23–29.

[7] E.V. Morozova, Ya.A. Mondikova, N.A.Moldovyan. Methods for

shared-key deniable encryption. Informatsionno-upravliaiushchie
sistemy, 2013, no. 6, pp. 73–78 (in Russian).

[8] N.A. Moldovyan, A. R. Birichevskiy, Ya.A. Mondikova. De-

niable Encryption based on block ciphers. Informatsionno-
upravliaiushchie sistemy, 2014, no. 5, pp. 80–86 (in Russian).

[9] International standard ISO/IEC 18033-3:2010. Information tech-
nology – Security techniques – Encryption algorithms – Part 3:
Block ciphers.

A.A.Moldovyan1 , D.N.Moldovyan2, Received July 10, 2015

V.A. Shcherbacov3,

1 Professor, ITMO University

Kronverksky pr., 10, St.Petersburg, 197101

Russia

E–mail: maa1305@yandex.ru

2 Dr., St. Petersburg Institute for Informatics and Automation of

Russian Academy of Sciences

14 Liniya, 39, St.Petersburg, 199178

Russia E–mail: mdn.spectr@mail.ru

3 Dr., Institute of Mathematics and Computer Science

Academy of Sciences of Moldova Academiei str. 5, MD−2028 Chişinău

Moldova

E–mail: scerb@math.md

330

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

On some applications of quasigroups in

cryptography

N.A. Moldovyan A.V. Shcherbacov V.A. Shcherbacov

Abstract

In the paper we present based on quasigroups new deniable
encryption method, relatively fast stream cipher and generalisa-
tion of El-Gamal scheme.

Keywords: cryptology, quasigroup, algorithm, stream, de-
niable, encryption, El-Gamal scheme

1 Deniable-encryption mode for block ciphers

Deniable encryption (DE) is a method for generating ciphertexts that
can be alternatively decrypted providing security against the so called
coercive attacks [3] for which it is assumed that after ciphertext has
been sent the adversary has possibility to force both the sender and the
receiver to open the plaintext corresponding to the ciphertext and the
encryption key. In the case of block ciphering the DE can be provided
with simultaneous encryption of the secret and fake messages using the
secret and fake keys, correspondingly. While being coerced the sender
and receiver of the ciphertext open the fake key and fake message and
declare they have used the probabilistic encryption [4]. Earlier in paper
[5] it had been proposed a method for simultaneous encryption of two
messages based on solving a system of two linear equations. In this
section we propose design of the DE mode for using block ciphers,
which is based on the mentioned method.

Definition 1. Binary groupoid (G, ◦) is isotopic image of a binary

groupoid (G, ·), if there exist permutations α, β, γ of the set G such

that x ◦ y = γ−1(αx · βy) [1].

c©2015 by N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

331

N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

Suppose EV be a block encryption algorithm with n-bit input data
block and the value used as encryption key. All existing n-bit data
blocks can be considered as elements of some quasigroup with the op-
eration ∗ defined as follows:

K ∗ i = EV (K ⊕ EV (i)),

where ⊕ is the XOR operartion; K and i are n-bit vectors. This quasi-
group is isotope of the group (G,⊕), where G is the set of all n-bit
vectors. Here EV is a permutation of the symmetric group SG.

Evidently, for all possible values i and Q 6= K we have

EV (Q⊕ EV (i)) 6= EV (K ⊕EV (i)). (1)

Using this property of the quasigroup one can define simultane-
ous encryption of two different messages T = (t1, t2, . . . , ti, . . . , tz) and
M = (m1,m2, . . . ,mi, . . . ,mz), where z < 2n; ti and mi are n-bit data
blocks, as generation of the single ciphertext C = (c1, c2, . . . , ci, . . . , cz)
containing (2n)-bit ciphertext blocks ci = (c′i, c

′′
i), where c′i and c′′i are

n-bit values, computed from the following system of equations in the
field GF (2n):

{

c′i +Aic
′′
i ≡ Bi +mi mod η(x)

c′i +Gic
′′
i ≡ Hi + ti mod η(x),

(2)

where η(x) is some specified irreducible binary polynomial of the degree
n; the n-bit values Ai, Bi, Gi, and Hi are computed using the random
n-bit initialization vector V (this value is not secret) as follows:

Ai = EV (K ⊕ EV (i));Gi = EV (Q⊕ EV (i));

Bi = EK(Ai);Hi = EQ(Gi).

While solving (1) the values Ai, Bi, Gi, and Hi are considered as bi-
nary polynomials of the degree s < n. Due to condition (1) the system
(2) always has the single solution, therefore the proposed deniable-
encryption procedure is defined correctly. Let us agree that the secret
message (key) is the value T (Q) and the fake message (key) is the
value M (K). If the coercer forces the sender and receiver of the se-
cret message T to open the ciphertext C and the encryption key, then

332

On applications of quasigroups in cryptography

they open the fake key K and the fake message M and declare using
the probabilistic block-encryption mode implemented with the block
cipher E. In terms of paper [4] the declared encryption algorithm is
called the associated encryption algorithm.

In the case of the proposed deniable-encryption method the last
algorithm is described as consecutive probabilistic encryption of the
data blocks mi for each value i = 1, 2, . . . , z performing the following
steps:

1. Generate a random initialization vector V and compute the
values Ai = EV (K ⊕ EV (i)) and Bi = EK(Ai).

2. Generate a random binary polynomial ρi(x) of the degree s < n.

3. Compute the unknowns c′i and c′′i from the following system of
equations in GF (2n):

{

c′i +Aic
′′
i ≡ Bi +mi mod η(x)

c′i + ρic
′′
i ≡ 1 mod η(x),

(3)

Evidently, for some sequence of the values ρ1(x), ρ2(x), . . . , ρz(x) the
message M is transformed with the key K into the given ciphertext C.

To distinguish the use of the deniable encryption with the system
(2) from the probabilistic encryption with the system (3) the poten-
tial coercive attacker should compute the key Q. The last problem is
computationally difficult, if E is a secure block cipher, for example,
AES [7] with 128-bit key and n = 128. Restoring the secret message
from the ciphertext is performed as decryption of each ciphertext block
ci = (c·i, c

·′
i), i = 1, 2, . . . , z, as follows:

1. Using the secret key Q compute the values Gi = EV (Q⊕EV (i))
and Hi = EQ(Gi).

2. Compute the plaintext data block ti = c′i +Gic
′′
i −Hi mod η(x).

The fake decryption of the ciphertext is as follows (i = 1, 2, . . . , z):

1. Using the fake key K compute the values Ai = EV (K ⊕ EV (i))
and Bi = EK(Ai).

2. Compute the plaintext data block mi = c′i+Aic
′′
i −Bi mod η(x).

333

N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

2 Stream cipher on base of binary quasigroups

Here we give more detailed description of algorithm which was proposed
in [10]. This algorithm simultaneously uses two cryptographical proce-
dures: enciphering using generalisation of Markovski stream algorithm
[11] and enciphering using a system of orthogonal operations.

We also give some realisation of this algorithm on base of T-
quasigroups, more precise, on the base of medial quasigroups. Neces-
sary information about quasigroups and some its applications in cryp-
tography can be found in [1, 8, 10].

Below we denote the action of the left (right, middle) translation
in the power a of a binary quasigroup (Q, g1) on the element u1 by
the symbol g1T

a
l1
(u1). And so on. Here l1 means leader element. See

[8, 10, 11] for details.

Algorithm 1. Enciphering. Initially we have plaintext u1, u2, . . . , u6.

Step 1.

g1T
a
l1
(u1) = v1

g2T
b
l2
(u2) = v2

F c
1 (v1, v2) = (v′1, v

′
2)

Step 2.

g3T
d
v′
1

(u3) = v3

g4T
e
v′
2

(u4) = v4

F
f
2
(v3, v4) = (v′3, v

′
4)

Step 3.

g5T
g

v′
3

(u5) = v5

g6T
h
v′
4

(u6) = v6

F i
3(v5, v6) = (v′5, v

′
6).

(4)

We obtain ciphertext v′1, v
′
2, . . . , v

′
6.

334

On applications of quasigroups in cryptography

Deciphering. Initially we have ciphertext v′1, v
′
2, . . . , v

′
6.

Step 1.

F−c
1

(v′1, v
′
2) = (v1, v2)

g1T
−a
l1

(v1) = u1

g2T
−b
l2

(v2) = u2

Step 2.

F
−f
2

(v′3, v
′
4) = (v3, v4)

g3T
−d
v′
1

(v3) = u3

g4T
−e
v′
2

(v4) = u4

Step 3.

F−i
3

(v′5, v
′
6) = (v5, v6)

g5T
−g

v′
3

(v5) = u5

g6T
−h
v′
4

(v6) = u6

(5)

We obtain plaintext u1, u2, . . . , u6.

From Algorithm 1 we obtain classical Markovski algorithm, if we
take only one quasigroup, one kind of quasigroup translations (left
translations) any of which is taken in power = 1, and, finally, if sys-
tem of orthogonal operations (crypto-procedure F) is not used. Some
generalisations of Algorithm 1 are given in [12].

3 T-quasigroup based stream cipher

We give a numerical example of encryption Algorithm 1 based on T -
quasigroups (more exactly, on medial quasigroups) [12]. Notice that
the number 257 is prime. Form of parastrophes of T-quasigroups, for

example, of quasigroup (A,
(13)

∗) can be found in [12], [6, p. 39].

Example 1. Take the cyclic group (Z257,+) = (A,+).

335

N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

1. Define T-quasigroup (A, ∗) with the form x∗y = 2 ·x+131 ·y+3
with a leader element l, say, l = 17. Denote the mapping x 7→ x∗l

by the letter g1, i.e. g1(x) = x ∗ l for all x ∈ A.

In order to find the mapping g−1

1
we find the form of operation

(13)

∗ . We have x
(13)

∗ y = 129 ·x+63 ·y+127, f−1x = x
(13)

∗ l. Then

g−1

1
(g1(x)) = g−1

1
(x ∗ l) = (x ∗ l)

(13)

∗ l=x.

In some sense quasigroup (A,
(13)

∗) is the ”right inverse quasi-

group” to quasigroup (A, ∗). Notice that from results of article

[6, Theorem 16] it follows that (A, ∗)⊥(A,
(13)

∗).

2. Define T-quasigroup (A, ◦) with the form x◦y = 10 ·x+81 ·y+53
with a leader element l, say, l = 71. Denote the mapping x 7→ l∗x

by the letter g2, i.e. g2(x) = l ◦ x for all x ∈ A.

In order to find the mapping g−1

2
we find the form of operation

(23)

◦ . We have x
(23)

◦ y = 149 · x+ 165 · y + 250.

3. Define a system of two parastroph orthogonal T-quasigroups (A, ·)

and (A,
(23)

·) in the following way

x · y = 3 · x+ 5 · y + 6

x
(23)

· y = 205 · x+ 103 · y + 153.

Denote quasigroup system (A, ·,
(23)

·) by F (x, y), since this system

is a function of two variables.

In order to find the mapping F−1(x, y) we solve the system of

linear equations
{

3 · x+ 5 · y + 6 = a

205 · x+ 103 · y + 153 = b.

We have ∆ = 55, 1/∆ = 243, x = 100 ·a+70 ·b+255, y = 43 ·a+
215 · b. Therefore we have, if F (x, y) = (a, b), then F−1(a, b) =

336

On applications of quasigroups in cryptography

(100 · a+ 70 · b+ 255, 43 · a+ 215 · b), i.e.

{

x = 100 · a+ 70 · b+ 255

y = 43 · a+ 215 · b.

We have defined the mappings g1, g2, F and now we can use them

in Algorithm 1.

Let 212; 17; 65; 117 be a plaintext. We take the following values in

formula (4): a = b = d = e = f = 1; c = 2. Below we use Gothic font

to distinguish leader elements, i.e., the numbers 17 and 71 are leader

elements. Then

Step 1.

g1(212) = 212 ∗ 17 = 2 · 212 + 131 · 17 + 3 = 84
g2(17) = 71 ◦ 17 = 10 · 71 + 81 · 17 + 53 = 84
F (84; 84) = (3 · 84 + 5 · 84 + 6; 205 · 84 + 103 · 84 + 153) = (164; 68)
F (164; 68) = (3·164+5·68+6; 205·164+103·68+153) = (67; 171)

Step 2.

g1(65) = 65 ∗ 67 = 2 · 65 + 131 · 67 + 3 = 172
g2(117) = 171 ◦ 117 = 10 · 171 + 81 · 117 + 53 = 189
F (172; 189) = (3 · 172 + 5 · 189 + 6; 205 · 172 + 103 · 189 + 153) =

(182; 139)

We obtain the following ciphertext 67; 171; 182; 139.

For deciphering we use formula (5).

Step 1.

F−1(67; 171) = (100·67+70·171+255, 43·67+215·171) = (164; 68)
F−1(164; 68) = (100 ·164+70 ·68+255, 43 ·164+215 ·68) = (84; 84)

g−1

1
(84) = 84

(13)

∗ 17 = 129 · 84 + 63 · 17 + 127 = 212

g−1

2
(84) = 71

(23)

◦ 84 = 149 · 71 + 165 · 84 + 250 = 17

Step 2.

F−1(182; 139) = (100 · 182 + 70 · 139 + 255, 43 · 182 + 215 · 139) =
(172; 189)

g−1

1
(172) = 172

(13)

∗ 67 = 129 · 172 + 63 · 67 + 127 = 65

337

N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

g−1

2
(189) = 171

(23)

◦ 189 = 149 · 171 + 165 · 189 + 250 = 117

A program using freeware version of programming language Pascal
was developed. Experiments demonstrate that encoding-decoding is
executed sufficiently fast.

Remark 1. Proper binary groupoids are more preferable than linear

quasigroups by construction of the mapping F (x, y) in order to make

encryption more safe, but in this case decryption may be slower than

in linear quasigroup case and definition of these groupoids needs more

computer (or some other device) memory. The same remark is true

for the choice of the function g. Maybe a golden mean in this choice

problem is to use linear quasigroups over non-abelian, especially simple,

groups.

Remark 2. In this cipher there exists a possibility of protection against

standard statistical attack. For this scope it is possible to denote more

often used letters or pair of letters by more than one integer or by more

than one pair of integers.

4 De-symmetrisation of Markovski algorithm

We give an analogue of El Gamal encryption system based on
Markovski algorithm.

Let (Q, f) be a binary quasigroup and T = (α, β, γ) be its isotopy.

Alices keys are as follows:

Public Key is (Q, f), T , T (m,n,k) = (αm, βn, γk), m,n, k ∈ N, and
Markovski algorithm.

Private Key m,n, k.

Encryption

To send a message b ∈ (Q, f) Bob computes T (r,s,t), T (mr,ns,kt) for
a random r, s, t ∈ N and (T (mr,ns,kt)(Q, f)).

The ciphertext is (T (r,s,t), T (mr,ns,kt)(Q, f), (T (mr,ns,kt)(Q, f))b).

To obtain (T (mr,ns,kt)(Q, f))b Bob uses Markovski algorithm which
is known to Alice.

338

On applications of quasigroups in cryptography

Decryption

Alice knows m,n, k, so if she receives the ciphertext

(T (r,s,t), T (mr,ns,kt)(Q, f), (T (mr,ns,kt)(Q, f))b),

she computes T (−rm,−ns,−kt) from T (r,s,t) and then (Q, f), further she
computes (Q, f)−1 and, finally, she computes b.

In this algorithm it can also be used isostrophy [9] instead of isotopy,
Algorithm 1 instead of Markovski algorithm, n-ary (n > 2) quasigroups
[2, 10] instead of binary quasigroups.

References

[1] V.D. Belousov. Foundations of the Theory of Quasigroups and

Loops. Nauka, Moscow, 1967. (in Russian).

[2] V.D. Belousov. n-Ary Quasigroups. Stiintsa, Kishinev, 1971. (in
Russian).

[3] R. Canetti, C. Dwork, M. Naor, R.Ostrovsky. Deniable Encryp-

tion. Proceedings Advances in Cryptology CRYPTO 1997, Lec-
tute Notes in Computer Science, 1294:90–104, 1997.

[4] A.A. Moldovyan, N.A. Moldovyan. Practical method for bi-

deniable public-key encryption. Quasigroups and related systems,
22:277–282, 2014.

[5] A.A. Moldovyan, N.A. Moldovyan, V. A. Shcherbacov. Bi-deniable
public-key encryption protocol secure against active coercive ad-

versary. Buletinul Academiei de Stiinte a Republicii Moldova.
Matematica, (3):23–29, 2014.

[6] G.L. Mullen, V.A. Shcherbacov. On orthogonality of binary oper-

ations and squares. Bul. Acad. Stiinte Repub. Mold., Mat., (2):3–
42, 2005.

[7] J. Pieprzyk, Th. Hardjono, J. Seberry. Fundumentals of Computer

Security. Springer-Verlag, Berlin, 2003.

339

N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

[8] V.A. Shcherbacov. Elements of quasigroup the-

ory and some its applications in code theory, 2003.
links: www.karlin.mff.cuni.cz/drapal/speccurs.pdf;
http://de.wikipedia.org/wiki/Quasigruppe.

[9] V.A. Shcherbacov. On the structure of left and right F-, SM- and

E-quasigroups. J. Gen. Lie Theory Appl., 3(3):197–259, 2009.

[10] V.A. Shcherbacov. Quasigroups in cryptology. Comput. Sci. J.
Moldova, 17(2):193–228, 2009.

[11] V.A. Shcherbacov, N.A. Moldovyan. About one cryptoalgorithm.

In Proceedings of the Third Conference of Mathematical Society
of the Republic of Moldova dedicated to the 50th anniversary of
the foundation of the Institute of Mathematics and Computer Sci-
ence, August 19-23, 2014, Chisinau, pp. 158–161, Chisinau, 2014.
Institute of Mathematics and Computer Science.

[12] Victor Shcherbacov. Quasigroup based crypto-algorithms, 2012.
arXiv:1201.3016.

N.A.Moldovyan1, A.V. Shcherbacov2, Received July 15, 2015

V.A. Shcherbacov3,

1 Professor, St. Petersburg Institute for Informatics and Automation of

Russian Academy of Sciences

14 Liniya, 39, St.Petersburg, 199178

Russia

E–mail: nmold@mail.ru

2 M.Sc., Theoretical Lyceum ”C. Sibirschi”

Lech Kaczyski str. 4, MD-2028, Chişinău

Moldova

E–mail: admin@sibirsky.org

3 Dr., Institute of Mathematics and Computer Science

Academy of Sciences of Moldova Academiei str. 5, MD−2028 Chişinău

Moldova

Email: scerb@math.md

340

Part 10

Databases,

artificial intelligence

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Computer Simulation of Multi-optional

Decisions

Ion Bolun, Alexandru Costas

Abstract

The formula for the estimation of average disproportion of
seats allocation using Hamilton method is obtained. It is shown
that, by proportionality of voters’ will representation in the final
multi-optional decision, the best from the d’Hondt, Huntington-
Hill and Sainte-Laguë methods, is the last one. Also, the use of
Sainte-Laguë method is easier than that of complemented Web-
ster method. Moreover, the proposed monotone adapted Sainte-
Laguë method is considerably better than the Huntington-Hill
one. So, for apportionment in the United States Congress House
of Representatives, the adapted Sainte-Laguë method is more
convenient than the used from 1941 year Huntington-Hill method.

Keywords: disproportion, votes-decision methods, com-
puter simulation, comparison, predicting disproportionality

1 Introduction

The main issue of multi-optional decision-making systems with pro-
portional representation (PR) is the disproportion of voters’ will rep-
resentation in final decision. As criteria of disproportionality it is op-
portune to use the Average relative deviation index (ARD) Id [2]. Its
minimum value is ensured by Hamilton (Hare) method [1, 4]. However,
this method is not immune to the Alabama, of Population and of New
State paradoxes [1]. Therefore, in many cases they deny its applica-
tion in the benefit of monotonous divisor methods, such as d’Hondt,
Sainte-Laguë and Huntington-Hill ones [1, 4]. At the same time, it is

c©2015 I. Bolun, A. Costas

342

Computer Simulation of Multi-optional Decisions

not strictly determined which of these “votes-decisions” (VD) methods
is more convenient.

Qualitative comparison of Hamilton, Huntington-Hill, d’Hondt,
Sainte-Laguë and Mixed VD methods by disproportionality (Id), quota
rule, immunity to paradoxes and non-favoring parties, basing on results
from [1, 3-5], are systemized in [7]. Quantitative comparisons of these
five methods for particular cases, by average disproportion and non-
favoring parties, were done in [1, 3, etc.]. Some results of comparison
of Hamilton, d’Hondt and Mixed VD methods by computer simulation
are described in [7].

Known results of comparing VD methods are extended, in this pa-
per, by computer simulation, using the elaborated application SIMOD.
The average value of Id index for optimal solutions using Huntington-
Hill and the proposed adapted Sainte-Laguë methods are added to the
existing results. The comparative analyses of monotone methods with
divisor are also done. The obtained results would allow the argued
choose of appropriate VD method. A case study in this aim is de-
scribed.

There are also compared the theoretically obtained mathematical
expressions on the average value of Id index for optimal solutions using
Hamilton method with results obtained by computer simulation.

The most known practices with refer to multi-optional decisions
are, probably, the ones related to elections. Therefore, further, the ad-
dressed aspects of multi-optional decision-making systems will be in-
vestigated (not harming the universality) through party-lists elections.

2 The optimization problem

Let [8]: M – number of seats in the elective body; n – number of parties
that have reached or exceeded the representation threshold; V – total
valid votes cast for the n parties; d = M/V – influence power (rights)
of each elector (decider); Vi, vi – number and, respectively, percentage
of valid votes cast for party i; xi, mi – number and, respectively, per-
centage of seats to be allocated to party i; Id – value of ARD index.
Here V1 + V2 + V3 + . . .+ Vn = V .

343

I. Bolun, A. Costas

Knowing quantities (integers): M ; n; Vi, i = 1, n, it is required to
determine the nonnegative values of unknowns xi (i = 1, n) – integers,
which would ensure the minimization of the index Id value

Id =

n
∑

i=1

|vi −mi| → min (1)

in compliance with the restriction

n
∑

i=1

xi = M. (2)

Problem (1)-(2) is of mathematical programming in integers. The
minimum value I∗d of ARD index is obtained using Hamilton method
[1, 4].

3 Disproportionality of Hamilton method’s so-

lutions

In this section, results of mathematical expectancy Ī∗d of I∗d values, ob-
tained by simulation, are compared with the theoretical approximate.

3.1 Theoretical mathematical expectancy of dispropor-

tionality

In comparative analyses, but also for various forecasts, the definition
domain of I∗d values is of interest. Knowledge of definition domain and,
also, of mathematical expectancy Ī∗d expands the information about
the possible I∗d values in concrete elections in the tendency to minimize
the index Id value. This domain is determined in [9]. The knowledge of
mathematical expectancy Ī∗d of I∗d values, theoretically investigated in
[10] would also extend the possibilities of the mentioned above analyses.

Using Id as index of disproportionality, in [10] it is obtained the
following analytical expression for I∗d for a specific election

344

Computer Simulation of Multi-optional Decisions

I∗d =
200

V

∆M
∑

j=1

(Q−Rj) = 200

∆M

M
−

1

V

∆M
∑

j=1

Rj

 , (3)

where Q = V/M is the standard quota (Hare quota), and Rj , j =
1,∆M are the largest ∆M remainders from the ∆Vi = Vi − aiQ, i =
1, n, ai = ⌊Vi/Q⌋ and

∆M =
1

Q

n
∑

i=1

∆Vi. (4)

From (3), one can see that I∗d depends on difference between ratios
∆M/M and (R1 +R2 + . . . +R∆M)/V .

Mathematical expectancy Ī∗d depends both, on the specificity of op-
timization problem, reflected in solution (3), and on the characteristics
of the set of ballots for which it is determined. In [10] four approaches
are proposed: 1) direct; 2) simplistic, based on the definition of I∗d ; 3)
highly simplified, based on a conventional election, the characteristics
of which are equal to certain average characteristics of an infinity of
polls; 4) simplified, based on n− 1 conventional polls, the characteris-
tics of which are equal to certain average characteristics of an infinity
of polls. In the following we will examine the first three approaches.

Direct approach involves the calculation of I∗dk value of I∗d index
for each election k, and then the average Ī∗d value on all K polls. At
K → ∞, Ī∗d becomes mathematical expectancy. The main drawback
of this approach is the difficulty of obtaining the analytical solution.
The solution can be obtained only by simulation, some of results being
described in s. 3.2.

The analytical solution can be obtained in the other three ap-
proaches: simplistic, highly simplified and simplified.

Simplistic approach assumes that the distribution of index I∗d

values is a symmetrical one to the middle of its definition domain [
⌣

I
∗

d,
⌢

I
∗

d], and the Ī∗d value may be determined as Ī∗d = (
⌣

I
∗

d +
⌢

I
∗

d)/2 =
⌢

I
∗

d/2.

Here
⌣

I
∗

d = 0 is the lower limit and
⌢

I
∗

d – the upper limit of the definition

345

I. Bolun, A. Costas

domain. According to [10], in case of this approach Ī∗d is calculated as
follow

Ī∗d =

⌢

I
∗

d

2
=

25

M

{

n, at n even
n− 1

n
, at n odd

, % of seats. (5)

From (5) it results that function Ī∗d (M,n) is monotonically decreas-
ing to M and monotonically increasing to n, and at even values of n
and M = n it does not depend on M and n. The upper limit of
Ī∗d (M,n), taking into account that n ≤ M , is obtained at M = n:
at even values of n, it does not depend on M = n and is equal to
25%; at odd values of n, it increases with increasing of M = n (since
sign(∂Ī∗d/∂n) = sign(n) > 0 at n ≥ 3) from 200/9% ≈ 22, 22%, for
M = n = 3, and tending to 25% for M = n → ∞.

The highly simplified approach involves the use, as average
value of I∗d for an infinite number of ballots K, of the value Ĩ∗d for the
conventional election with average remainders R̃j, j = 1, n. According
to [10], in case of this approach Ĩ∗d is determined as follows

Ĩ∗d =
25

M

{

n, at n even
(n+ 1)(1 − 1

n2), at n odd.
(6)

From (6) it can be easily seen that function Ĩ∗d (M,n) is monotoni-
cally decreasing to M and monotonically increasing to n, and at even
values of n and M = n it does not depend on M and n. The up-
per limit of Ĩ∗d (M,n), taking into account that n ≤ M , is obtained at
M = n: at even values of n, it does not depend on M = n and is equal
to 25%; at odd values of n, it increases with the decreasing of M = n

(since sign(∂Ĩ∗d (M,n)/∂n) = sign(−n2 + 2n + 3) < 0 at n > 3) from
200/9% ≈ 22,22%, for M = n = ∞, and tending to 800/27% ≈ 29,63%
at M = n = 3.

Comparing expressions (5) and (6), it can be seen that for even n

they coincide. Moreover, at n = 2, because always ∆M = 1, these
expressions convey exactly the average I∗d value, i.e.

Ĩ∗d

∣

∣

∣

n=2

=
50

M
%. (7)

346

Computer Simulation of Multi-optional Decisions

3.2 Mathematical expectancy of disproportionality, by

simulation

SIMOD application performs the direct approach for determining the
disproportionality of seats allocation, according to Hamilton method,
by computer simulation. The methodology for multi-optional PR vot-
ing systems computer simulation is described in [6]. Subject to simu-
lation is only quantities Vi, i = 1, n.

The simulation was carried out, using the following initial data:
N= 200000 (sample); V = 100000000; M = 5, 10, 20, 50, 100; n =
2, 3, 4, 5, 7, 10, 15, 20, 50, 100, n ≤ M . When generating quantities Vi,
i = 1, n, the uniform distribution was used. Some of the results of
calculations are shown in Table 1.

Table 1. Average value Ī∗ds of I∗d , obtained by simulation, %

Seats,
Number of parties, n

M 2 3 4 5 7 10 15 20 50 100

5 10,148 15,526 21,250 26,347

10 4,980 7,790 10,419 13,042 18,026 26,350

20 2,498 3,890 5,210 6,505 9,056 12,827 19,021 25,984

50 0,998 1,555 2,086 2,600 3,620 5,135 7,646 10,148 25,504

100 0,500 0,778 1,042 1,300 1,811 2,569 3,823 5,073 12,651 25,277

From Table 1 it can be seen that the Ī∗ds value is decreasing both, to
the number of seats M and to the number of parties n, the maximum
value (about 25-26%) being reached at M = n. In practice, as a rule,
cases for which M = n are not met. Ratio n/M does not exceed, usu-
ally, 0,1 and then, as it is shown in Table 1, Ī∗ds ≤ 3%. Complementary
to data of Table 1, for M = 200 and n = 20, it was obtained the value
Ī∗ds = 2, 537%, down from Ī∗ds = 5, 073% for M = 100 and n = 20.
Data from Table 1 at n = 2 also confirm justice of estimate (7).

347

I. Bolun, A. Costas

3.3 Comparative analyses

For comparative analysis of the three approaches: direct, simplistic and
highly simplified, the essence of which is described in s. 3.1, in sections
(a) and (b) of Table 2 there are shown respective quantitative values
for the same sets of initial data values as those used for Table 1 in s.
3.2.

Table 2. Average value of I∗d index conform to (5), (6) and combined

Seats,
Number of parties, n

M 2 3 4 5 7 10 15 20 50 100

a) Simplistic approach (Ī∗
d
), %

5 10 13,333 20 24

10 5 6,667 10 12 17,143 25

20 2,5 3,333 5 6 8,571 12,5 18,667 25

50 1 1,333 2 2,4 3,429 5 7,467 10 25

100 0,5 0,667 1 1,2 1,714 2,5 3,733 5 12,5 25

b) Highly simplified approach (Ĩ∗
d
), %

5 10 17,778 20 28,8

10 5 8,889 10 14,4 19,592 25

20 2,5 4,444 5 7,2 9,796 12,5 19,911 25

50 1 1,778 2 2,88 3,918 5 7,964 10 25

100 0,5 0,889 1 1,44 1,959 2,5 3,982 5 12,5 25

c) Combined approach (Ī∗
dc
), %

5 10 15,555 21,094 26,4

10 5 7,778 10,547 13,200 18,367 25,988

20 2,5 3,889 5,273 6,600 9,184 12,994 19,289 25,561

50 1 1,556 2,110 2,640 3,674 5,198 7,716 10,224 25,240

100 0,5 0,778 1,055 1,320 1,837 2,599 3,858 5,112 12,620 25,123

Comparing data of sections (a) and (b) in Table 2 with those of
Table 1, it can be seen that, for odd values of n, there are the following
relations: Ī∗d < Ī∗ds < Ĩ∗d , and for the even ones, except n = 2, on the
contrary, Ī∗ds > Ī∗d = Ĩ∗d . Therefore, section (c) of Table 2 presents data
for the combined approach (Ī∗dc), the average ratio, in this case, being
calculated according to formula

348

Computer Simulation of Multi-optional Decisions

Ī∗dc =
25

M

{

n, at n = 2
(n+ 1

2
)(1− 1

n2), at n > 2,
(8)

where (n+1/2)(1− 1/n2) = [(n− 1/n)+ (n+1)(1− 1/n2)]/2 from the
second line of (5) and (6).

To compare the direct approach (by simulation) with theoretical
approaches for each variant of the initial data, the absolute value of
difference between the value of each element of Table 1 with that of
the respective element of Table 2 is calculated. The obtained results
are shown in Table 3.

Table 3. Value of difference between Ī∗ds and indices values from Table 2

Seats,
Number of parties, n

M 2 3 4 5 7 10 15 20 50 100

a) Absolute value of difference Ī∗
ds

− Ī∗
d
, %

5 0,148 2,192 1,250 2,347

10 0,020 1,123 0,419 1,0420 0,883 1,351

20 0,002 0,557 0,210 0,505 0,484 0,327 0,355 0,984

50 0,002 0,222 0,086 0,200 0,191 0,135 0,179 0,148 0,504

100 0,001 0,111 0,042 0,100 0,096 0,069 0,090 0,073 0,151 0,277

b) Absolute value of difference Ī∗
ds

− Ĩ∗
d
, %

5 0,148 2,252 1,250 2,453

10 0,020 1,099 0,419 1,358 1,566 1,351

20 0,002 0,554 0,210 0,696 0,740 0,327 0,890 0,984

50 0,002 0,223 0,086 0,280 0,299 0,135 0,319 0,148 0,504

100 0,001 0,111 0,042 0,140 0,149 0,069 0,159 0,073 0,151 0,277

c) Absolute value of difference Ī∗
ds

− Ī∗
dc
, %

5 0,148 0,030 0,156 0,053

10 0,020 0,012 0,128 0,158 0,341 0,363

20 0,002 0,001 0,064 0,095 0,128 0,167 0,268 0,423

50 0,002 0,001 0,024 0,040 0,054 0,063 0,070 0,076 0,264

100 0,001 0,000 0,012 0,020 0,026 0,030 0,035 0,039 0,031 0,154

Comparing data of sections (a)-(c) of Table 3, it can be seen that
the lowest absolute deviations from results, obtained by simulation, are
for combined approach (Ī∗ds − Ī∗dc). Such deviations do not exceed, for

349

I. Bolun, A. Costas

M = n, approx. 0,5%. At the same time, for cases encountered in
practice (as a rule, n/M ≤ 0, 1), as shown in section (c) of Table 3,
|Ī∗ds − Ī∗dc| ≤ 0, 04%.

So, to forecasting the average disproportionality of seats allocation
(Ī∗d), when applying the Hamilton method, it is appropriate to use
the expression (8), the error not exceeding 0,5% of seats, and in most
practical cases – 0,05% of seats.

4 Comparison of monotone VD methods by

simulation

There are compared the well known d’Hondt, Sainte-Laguë and
Huntington-Hill monotone VD methods. Some results of calculations
at uniform distribution of quantities Vi, i = 1, n and initial data:
M = 5, 10, 20, 50, 100; n = 3, 4, 5, 7, 10, 15, 20, 50 (n < M); V = 108;
sample size of 200000 ballots for each pair {M,n}, are presented in
Figs. 1–3.

Figure 1. Ī∗d (dHondt) −Ī∗d(Huntington-Hill), %.

From Fig. 1 one can see that, by parameter Ī∗d , in some cases the
Huntington-Hill method is better then the d’Hondt one and, in other
cases, vice versa. Also, with the increase of M and decrease of n the
Huntington-Hill method became better than the d’Hondt one. At the
same time, for cases encountered in practice (usually, n/M ≤ 0, 1),

350

Computer Simulation of Multi-optional Decisions

Figure 2. Ī∗d (dHondt) −Ī∗d(Sainte-Lague), %.

Figure 3. Ī∗d(Huntington-Hill) −Ī∗d(Sainte-Lague), %.

351

I. Bolun, A. Costas

excepting n = 2 for small values of M , Huntington-Hill method is
better than the d’Hondt one (Ī∗d (d

′H)− Ī∗d(H −H) > 0).
Similarly, from Figures 2 and 3 one can see that Sainte-Laguë

method is better then the d’Hondt and Huntington-Hill ones, no mat-
ter of parameters M and n values (Ī∗d (d

′H) − Ī∗d (S − L) > 0, Ī∗d (H −

H)− Ī∗d (S−L) > 0). Also, the value of differences Ī∗d(d
′H)− Ī∗d (S−L)

and Ī∗d(H −H)− Ī∗d(S −L) are increasing with the decrease of M and
the increase of n.

So, the best, by parameter Ī∗d , from the examined monotone meth-
ods, is the Sainte-Laguë one. However, there may be particular cases,
when the Huntington-Hill method, as well as the d’Hondt method, en-
sures a lower value of parameter I∗d then the Sainte-Laguë one. To char-
acterize such situations, parameters RSL−dH and RSL−HH are used.
Parameter RSL−dH is the ratio of the percentage of ballots, for which Ī∗d
(d’Hondt) > Ī∗d(Sainte-Laguë), to the percentage of ballots, for which
Ī∗d (d’Hondt) < Ī∗d (Sainte-Laguë). Similarly, RSL−HH is the ratio of
the percentage of ballots, for which Ī∗d(Huntington-Hill) > Ī∗d(Sainte-
Laguë), to the percentage of ballots, for which Ī∗d(Huntington-Hill)
< Ī∗d (Sainte-Laguë).

Some results of parameters RSL−dH and RSL−HH calculations, at
uniform distribution of quantities Vi, i = 1, n and initial data: M =
20, 100; n = 3, 4, 5, 10; V = 108; sample size of 200000 ballots for each
pair {M,n}, are systemized in Table 1. Here P is the percentage of
ballots, for which Ī∗d (Sainte-Laguë) = Ī∗d(Hamilton)

Table 4. Some results of parameters P , RSL−dH and RSL−HH calcula-
tion

M = 20 M = 100

n =3 n =4 n =5 n =10 n =3 n =4 n =5 n =10

P , % 94,04 91,28 89,03 85,63 94,02 91,43 89,09 81,60

R
SL−dH

,

times

12,84 13,46 15,57 32,11 12,82 14,41 16,59 37,60

RSL−HH ,

times

4,79 5,71 6,84 25,49 2,68 3,19 3,65 5,38

From Table 1 one can see that, in cases of examined initial

352

Computer Simulation of Multi-optional Decisions

data, for more than 80% of ballots Sainte-Laguë method gives the
same allocation of seats as the Hamilton one does (Ī∗d (Sainte-Laguë)
= Ī∗d(Hamilton)). Also, Sainte-Laguë method gives a better distribu-
tion of seats for a number of polls at least 12-38 times higher than the
d’Hondt one and at least of 2,525 times higher than the Huntington-Hill
one does. Elsewhere, P index is decreasing and R index is increasing
with the increase of the number n of parties: more parties – less ef-
ficient is Sainte-Laguë method in comparison with the d’Hondt and
Huntington-Hill ones.

More than that, the Sainte-Laguë method meets the lower quota
(xi ≥ ai, i = 1, n), while the Huntington-Hill one may not satisfy it
[3]. Another advantage of Sainte-Laguë method, at n = 2 it coincides
with the Hamilton (optimal) one, while the d’Hondt and Huntington-
Hill may not coincide [5]. Also, at n = 2 and n = 3, the Sainte-Laguë
method meets the quota rule (ai ≤ xi ≤ ai + 1, i = 1, n), while the
d’Hondt and Huntington-Hill ones may not satisfy it [7]

Additionally, as it is shown in [11], Webster method is not always
equivalent, as affirmed in [1] and other publications, to the Sainte-
Laguë one. For equivalence, Webster method needs, in some cases,
additional operations shown in [11]. As a result, the use of Sainte-Laguë
method is easier than that of such complemented Webster method.

Overall, the use of Sainte-Laguë method is more efficient than that
of d’Hondt and Huntington-Hill ones and is easier than that of com-
plemented Webster method.

5 The adapted Sainte-Laguë method

In some cases it is needed to allocate to each party a number of seats
not lower than an established value. For example, in the United States
Congress House of Representatives each state shall have at least one
representative (seat). The ordinary Sainte-Laguë method does not en-
sure such allocation of seats. But it is ensured by Huntington-Hill
method and the described in this section adapted Sainte-Laguë (ASL)
method.

The adapted Sainte-Laguë method differs from the Sainte-Laguë

353

I. Bolun, A. Costas

one only by satisfying the condition that each state shall have at least
one representative (seat) in the House. According to this method, the
allocation of seats to states shall be done as follows:

1. Let Ω be the set of states, |Ω| = n. Allocating of seats to
states with the number of population that do not exceed the standard
quota (Hare quota) Q = V/M : for i = 1, n, if Vi ≤ Q, then xi := 1,
V := V − Vi, M := M − 1, Ω := Ω/i

2. For the new set Ω of states and new values of parameters n = |Ω|,
M , V and Q = V/M , to allocate seats according to the ordinary Sainte-
Laguë method. Stop.

Statement 5.1. The adapted Sainte-Laguë method is immune to
the Alabama, of Population and of New State paradoxes.

Proof. With refer to Alabama paradox, we have: M ′ > M ; V ′
i = Vi,

i = 1, n. Therefore, V ′ = V , V ′/M ′ = Q′ < Q = V/M . Here by
stroke (‘) the parameters for the second ballot are noted. To avoid
the Alabama paradox, it shall be x′i ≥ xi, i = 1, n. Indeed, let Fj =
Vj/[2(xj − 1) + 1] = min {Vi/[2(xi − 1) + 1], i ∈ Ω/G}, where G is the
set of parties for which Vi ≤ and xi = 1. Because of Q′ < Q and
V ′
i = Vi, i = 1, n, the number of parties for which V ′

i ≤ Q′ is not larger
than that of set G. So, for states of set G, having xi = 1, the condition
x′i ≥ xi is satisfied. From the other hand, because of M ′ > M , it takes
place F ′

k ≤ Fj , where F ′
k = min {V ′

i /[2(x
′
i − 1) + 1]}, i ∈ Ω/G. That is

why for states of set Ω/G the condition x′i ≥ xi is satisfied, too.

For the case of Population paradox, we have: M ′ = M ; V ′
i = Vi,

i = 1, n/k; V ′
k > Vk. Therefore, V ′ = V + V ′

k − Vk, V
′/M ′ = Q′ >

Q = V/M . To avoid the Population paradox, it shall be x′k ≥ xk.
Indeed, if Vk ≤ Q, then xk = 1 and because of restriction (xk, x

′
k) ≥ 1

anyway occurs x′k ≥ xk. Let Vk > Q, then V ′
k > Q′, too, because

of Q′ = (V + V ′
k − Vk)/M and V ′

k = Vk + (V ′
k − Vk), from where

V ′
k − Q′ = Vk − Q + (V ′

k − Vk)(1 − 1/M) > 0, taking into account
that V ′

k > Vk and M > 1. If so, and taking into account that Q′ > Q,
the number of parties for which V ′

i > Q’ is not larger than that of
set Ω/G. Therefore, and taking into account that V ′

k > Vk, we have
F ′
k > Fj , where F ′

k = V ′
k/[2(x

′
k − 1) + 1] and Fj = Vj/[2(xj − 1) + 1] =

min {Vi/[2(xi − 1) + 1], i ∈ Ω/G} So, in case of Vk > Q the condition

354

Computer Simulation of Multi-optional Decisions

x′k ≥ xk is satisfied, too.
Finally, regarding the New State paradox, we have: V ′

i = Vi, i =
1, n; Vn+1 = 0; V ′

n+1 > 0; V ′ = V + V ′
n+1; M

′ = M + xn+1. The value
of xn+1 is obtained by applying the respective optimization method.
To avoid the New State paradox, it shall be x′i = xi, i = 1, n. Indeed,
depending on relation between Q and Q′ it may be, for the second
ballot, that some states from set G will move to set Ω′/G′ (if Q >

Q′) or on the contrary some states from set Ω/G will move to set G′

(if Q < Q′), or G′ = G ∪ (n + 1) (if Q = Q′) and no states move
between these sets. But in no cases these movements of states between
mentioned above sets do not influence the functions of preference of
parties Fi = Vi/[2(xi − 1) + 1], i = 1, n and therefore they do not
change the allocation of seats to parties.

It is easy to observe that the adapted Sainte-Laguë method is im-
mune to the Alabama, of Population and of New State paradoxes also
in cases when it is needed to allocate to each party a number of seats
not lower than an arbitrary nonnegative value, including larger than
one.

6 A case study

From 1941, the allocation of seats for the United States Congress House
of Representatives (the apportionment) is done using the Huntington-
Hill method. Let us compare, the Huntington-Hill and the described
in section 5 adapted Sainte-Laguë methods, when applied for appor-
tionment.

In Table 5 there are systemized data of apportionment for US Cen-
sus population in the period of 1940-2010 years and year 2014, being
used the following notations:

∆XHH – the number of seats by which the Huntington-Hill appor-
tionment differs from the optimal Hamilton one;

∆XASL – the number of seats by which the adapted Sainte-Laguë
apportionment differs from the optimal Hamilton one.

From Table 5 one can see that only in one from nine cases of ap-
portionment, the adapted Sainte-Laguë method gets a less proportional

355

I. Bolun, A. Costas

Table 5. Data of apportionment by Huntington-Hill and ASL methods

∆XHH ∆XASL

∆XHH−

∆XASL

States for which xi differs, and its deviation

from the optimal value, obtained by Hamil-

ton method

By Huntington-Hill

method

By adapted

Sainte-Laguë method

1940 2 2 0 Arkansas: -1, Nevada:

+1

Arkansas: -1, Nevada:

+1

1950 6 4 2 California: -1,

Massachusetts: -1,

Arkansas: -1, Hawaii:

+1, Nevada: +1,

Alaska: +1

California: -1,

Arkansas: -1, Nevada:

+1, Alaska: +1

1960 4 0 4 Illinois: -1, Mas-

sachusetts: -1, West

Virginia: +1, New

Hampshire: +1

None

1970 4 0 4 Illinois: -1, North Car-

olina: -1, Idaho: +1,

Montana: +1

None

1980 4 2 2 California: -1, Mas-

sachusetts: -1, New

Mexico: +1, Montana:

+ 1

California: -1, Mon-

tana: +1

1990 4 2 2 New York: -1, New

Jersey: -1, Oklahoma:

+1, Mississippi: +1

New York: -1, Wash-

ington: +1

2000 2 0 2 North Carolina: -1,

Utah: +1

None

2010 2 -2 None North Carolina: +1,

Rhode Island: -1

2014 2 0 2 Pennsylvania: -1,

Rhode Island: +1

None

356

Computer Simulation of Multi-optional Decisions

result (two seats) than the Huntington-Hill method does (year 2010),
when the Huntington-Hill method gets a less proportional result (two
or four seats) then the adapted Sainte-Laguë method does in seven
cases (years 1950, 1960, 1970, 1980, 1990, 2000 and 2014). In four cases
the apportionments obtained by adapted Sainte-Laguë method coincide
with the optimal Hamilton (years 1960, 1970, 2000 and 2014), when the
apportionment obtained by adapted Huntington-Hill method coincide
with the optimal Hamilton only in one case (year 2010). In one case
(year1940), the apportionments, obtained by both compared methods,
coincide. So, these particular cases confirm the fact that the adapted
Sainte-Laguë method is considerably better than the Huntington-Hill
one.

Let’s look beyond. We will compare the Huntington-Hill and
the adapted Sainte-Laguë methods, by computer simulation using the
SIMOD application, for the same US Census years and the same US
summary states population (V), but for general uniform or standard
normal distribution of states population Vi, i = 1, n. As comparison
criterion we will use RASL−HH – the ratio of the percentage of ballots,
for which Ī∗d (adapted Sainte-Laguë) < Ī∗d (Huntington-Hill), to the
percentage of ballots, for which Ī∗d (Huntington-Hill) < Ī∗d (adapted
Sainte-Laguë)

The computer simulation was carried out using samples of 200000
ballots each. So, for uniform distribution of states population we
have RASL−HH (1940) = 6, 720 times and for the other eight years
– RASL−HH ∈ [7, 276; 7, 535] times. The value for the year 1940 dif-
fers essentially from values for the other eight years because in that
year there were only 48 states. For standard normal distribution of
states population, we have RASL−HH(1940) = 2, 183 times and for the
other eight years – RASL−HH ∈ [2, 258; 2, 306] times. This data also
confirm that, for apportionment, the adapted Sainte-Laguë method is
considerably better than the Huntington-Hill one.

It was also determined that, at uniform distribution of states pop-
ulation, apportionments with adapted Sainte-Laguë method have the
average value of I∗d index Ī∗d(ASL, 1940) = 2, 946 % of seats and for
the other eight years – Ī∗d(ASL) ∈ [3, 074; 3, 076] % of seats. Sim-

357

I. Bolun, A. Costas

ilar, at standard normal distribution of states population, we have
Ī∗d (ASL, 1940) = 2, 785 % of seats and for the other seven Census
years and year 2014 – Ī∗d (ASL) ∈ [2, 899; 2, 900] % of seats.

7 Conclusions

Combining theoretical results and computer simulation, the formula is
obtained for the estimation of average disproportion of seats allocation,
using Hamilton method, for each particular value of the number M of
seats and of the number n of parties, the error not exceeding 0,5% of
seats, and in most practical cases – 0,05% of seats. This formula can
be used to predict the disproportionality of multi-optional decisions by
Hamilton method.

By proportionality of voters’ will representation in the final multi-
optional decision, from the three compared monotone VD methods
with divisor – d’Hondt, Huntington-Hill and Sainte-Laguë, the best
is the last one. For example, in cases of examined initial data (20
≤ M ≤ 100, 3 ≤ n ≤ 10 and uniform distribution of quantities Vi,
i = 1, n) the Sainte-Laguë method gives a better distribution of seats
for a number of polls at least 12-38 times higher than the d’Hondt
one and at least of 2,5-25 times higher than the Huntington-Hill one
does. Also, the use of Sainte-Laguë method is easier than that of
complemented Webster method.

The Sainte-Laguë method is adapted to the requirement that each
party (state) shall have at least one seat (representative) in the elective
body. It is proved that the adapted Sainte-Laguë method is immune
to the Alabama, of Population and of New State paradoxes. By com-
puter simulation it is shown that ASL method is considerably better,
in sense of minimizing the disproportion of seats allocation, than the
Huntington-Hill one. So, for the US Census summary states popula-
tion (V) and uniform distribution of states population Vii = 1, n, the
ASL method gives, in average, a better allocation of seats for a number
of polls of 6,720 times higher for the Census year 1940, and of 7,276-
7,535 times higher than the Huntington-Hill one does, for the other
seven Census years in the period of 1950-2010 years (1950, 1960, . . . ,

358

Computer Simulation of Multi-optional Decisions

2010) and year 2014. In case of standard normal distribution of states
population Vi, i = 1, n, the ASL method gives, in average, a better
allocation of seats for a number of polls of 2,183 times higher for the
Census year 1940, and of 2,258-2,306 times higher than the Huntington-
Hill one does, for the other seven Census years in the period of 1950
– 2010 years (1950, 1960, . . . , 2010) and year 2014. Apportionments
with adapted Sainte-Laguë method have the average value of I∗d index
equal to approximately 2, 9 − 3, 0 seats.

These average results were confirmed by conventional apportion-
ment for the United States Congress House of Representatives for Cen-
sus values of states population Vi, i = 1, n in the examined period: only
in one, from the nine cases of apportionment, the ASL method gets a
less proportional result than Huntington-Hill method does (year 2010),
while the Hunting-ton-Hill method gets a less proportional result than
the ASL method does in seven cases (years 1950, 1960, 1970, 1980,
1990, 2000 and 2014).

So, from the point of view of US Constitution requirement of
proportional representation of states in the United States Congress
House of Representatives, it is considerably better to use for appor-
tionment the adapted Sainte-Laguë method than the used from 1941
year Huntington-Hill method.

References

[1] M. Gallagher, P. Mitchell. The Politics of Electoral Systems. Lon-
don: Oxford University Press, 2008.

[2] I. Bolun. Comparison of indices of disproportionality in PR sys-

tems. Computer Science Journal of Moldova, vol.20, no 2, 2012. –
pp. 246–271.

[3] I. Bolun. “Votes-decision” monotone method in PR systems. Eco-
nomica, no 4(78), 2011. – pp. 108–117.

[4] I. Bolun. Algorithmization of optimal allocation of seats in PR

systems. Economica, nr.3(77)/2011. – pp. 137–152.

359

I. Bolun, A. Costas

[5] I. Bolun. Disproportionality of some”votes-decision” rules in PR

systems. In: 20 years of economical reforms, intern. conf., Sept.
23-24, 2011. Vol. I. Chisinau: Editura ASEM, 2011. – pp. 425–430
(Romanian).

[6] I. Bolun, S. Cebotari. An application for PR voting systems simu-

lation. In: 60 years of economical higher education in the Republic
of Moldova, intern. conf., Sept. 27-28, 2013. Vol. I. Chisinau: Ed-
itura ASEM, 2013. – pp. 372–376 (Romanian).

[7] I. Bolun. Disproportionality of multi-optional PR voting systems.
In: The Third Conference of Mathematical Society of the Republic
of Moldova, Aug. 19-23, 2014, Chisinau, Moldova: Proceedings
IMCS-50. Chisinau: IMI, 2014. – pp. 471–476.

[8] I. Bolun. Seats allocation in party-list elections. Economica,
nr.2(76)/2011. – pp. 138–151.

[9] I. Bolun. Comparison of indices of disproportionality in PR sys-

tems. Computer Science Journal of Moldova, vol. 20, no. 2(59),
2012. – pp. 246–271.

[10] I. Bolun. Definition domain of optimal solution disproportionality

in PR systems. In: Annals of Academy of Economic Studies of
Moldova, Ed. 10. Chisinau: Editura ASEM, 2012. – pp. 283–298.
(Romanian).

[11] I. Bolun. About equivalence of Jefferson and d’Hondt methods and,

respectively, of that of Webster and Sainte-Laguë ones. In: Com-
petitiveness and innovation in the knowledge economy, intern.
conf., Sept. 28-29, 2012. Vol. II. Chisinau: Editura ASEM, 2012.
– pp. 10–13. (Romanian).

Ion Bolun, Alexandru Costas, Received July 12, 2015

Academy of Economic Studies of Moldova

E–mail: bolun@ase.md

360

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Axiomatics for multivalued dependencies in

table databases: correctness and completeness

Dmitriy Bui, Anna Puzikova

Abstract

Axiomatics for multivalued dependencies in table databases
and axiomatics for functional and multivalued dependencies are
reviewed. For each axiomatic relations of syntactic and seman-
tic succession are considered. A rigorous and convincing proof
of correctness and completeness of these axiomatics (within the
paradigm of mathematical logic) is established. In particular, the
properties of closures of sets of specified dependencies are inves-
tigated. The properties of set-theoretic function restriction have
been used as mathematical framework.

Keywords: table databases, functional dependencies, multi-
valued dependencies, completeness of axiomatic system.

1 Introduction

In spite of the accumulated theoretical researches normalization the-
ory is fragmented and is far from satisfactory conclusion. The works
devoted to the ways of solving existing problems of designing database
schemas (see, for example, [1]) and improvement of algorithmic sys-
tems for normalization (see, for example, [2]) evidence this fact. The
process of normalization is based upon functional and multivalued de-
pendencies theory the foundation of which is made by corresponding
axiomatics and their completeness. The overview of research sources
has shown that these axiomatics lack the proof of completeness that
will comply with mathematical rigor.

c©2015 by D. Bui, A. Puzikova

361

D. Bui, A. Puzikova

2 Axiomatic for Multivalued Dependencies

All undefined concepts and notations are used in understanding of
monograph [3], in particular, s|X — restriction of the row s to the
set of attributes X.

Let t — a table, R — the scheme of the table t (finite set of at-
tributes); X, Y, W, Z — subsets of scheme R; s, s1, s2 — the rows of
table t. Henceforth we shall assume that set R and universal domain

D (the set, from which attributes take on values in interpretations) are
fixed.

A multivalued dependence (MVD) X →→ Y is valid on the table
t of the scheme R (see, for example, [3]), if for two arbitrary rows s1,
s2 of table t which coincide on the set of attributes X, there exists row
s3 ∈ t which is equal to the union of restrictions of the rows s1, s2, to
the sets of attributes X ∪ Y and R \ (X ∪ Y) respectively:

(X →→ Y)(t) = true
def
⇔ ∀s1, s2 ∈ t(s1|X = s2|X ⇒ ∃s3 ∈ t(s3 =

= s1|(X ∪ Y) ∪ s2|R \ (X ∪ Y))).

Structure of table t, which complies with MVD X →→ Y , can be
represented using the following relation. We say that rows s1, s2 of
table t are in the relation =X , if they coincide on the set of attributes
X:

s1 =X s2
def
⇔ s1|X = s2|X.

It is obvious that relation =X is equivalence relation and therefore
it partitions the table t into equivalence classes, which are as follows:

[s]=X
= {s|X}

⊗

πY ([s]=X
)
⊗

πR\(X∪Y)([s]=X
),

where s — arbitrary representative of the class.

A table t(R) is the model of a set of MVD’s G, if each MVD X →→

Y ∈ G is valid on table t(R):

t(R) is the model of G
def
⇔

def
⇔ ∀(X →→ Y)(X →→ Y ∈ G ⇒ (X →→ Y)(t) = true).

The following axioms and inference rules are valid [4].

Axiom of reflexivity : ∀t(X →→ Y)(t) = true, where Y ⊆ X.

Axiom: ∀t(X →→ Y)(t) = true, where X ∪ Y = R.

Rule of complementation: (X →→ Y)(t) = true ⇒ (X →→ R \ (X ∪

362

Axiomatics for multivalued dependencies in table databases

Y))(t) = true.

Rule of augmentation: (X →→ Y)(t) = true&Z ⊆ W ⇒ (X∪W →→

Y ∪ Z)(t) = true.

Rule of transitivity : (X →→ Y)(t) = true & (Y →→ Z)(t) = true ⇒

(X →→ Z \ Y)(t) = true.

The proof in terms of the monograph [3], for example, the axiom
of reflexivity is given in [5].

A MVD X →→ Y is semantically deduced from the set of MVD’s
G, if at each table t(R), which is the model of set G, MVD X →→ Y

is valid too:
G |= X →→ Y

def
⇔ ∀t(R)(t is the model of the

G ⇒ (X →→ Y)(t) = true).
The relation |= will be called semantic consequence relation.
From above-mentioned axioms and inference rules follow corollaries.

Lemma 1. The following properties of the semantic consequence rela-

tion are valid:

1. ∅ |= X →→ Y for Y ⊆ X.

2. ∅ |= X →→ Y for X ∪ Y = R.

3. G |= X →→ Y ⇒ G |= X →→ R \ (X ∪ Y).
4. G |= X →→ Y & Z ⊆ W ⇒ G |= X ∪W →→ Y ∪ Z.

5. G |= X →→ Y &G |= Y →→ Z ⇒ G |= X →→ Z \ Y.

6. G |= X →→ Y &G |= Y →→ Z &Z ∩ Y = ∅ ⇒ G |= X →→ Z.

A MVD X →→ Y is syntactically derived from the set of MVD’s
G with respect to the scheme R (G ⊢R X →→ Y), if there is a finite
sequence of MVD’s ϕ1, ϕ2, . . . , ϕm−1, ϕm, where ϕm = X →→ Y and
for all ∀i = 1,m− 1 each ϕi is either the axiom of reflexive or belongs to
G, or is derived with some inference rule for MVD’s (complementation,
augmentation, transitivity) from the previous in this sequence ϕj , ϕk,
j, k < i.

Let sequence ϕ1, ϕ2, . . . , ϕm−1, ϕm be called proof, following the
tradition of mathematical logic [6].

Let there be given certain set of MVD’s G. Closure [G]R is a set of
all MVD’s, that are syntactically derived from G:

[G]R
def
= {X →→ Y |G ⊢R X →→ Y }.

363

D. Bui, A. Puzikova

For notational convenience, we write ⊢ for ⊢R.

Lemma 2. The following properties are valid:

1) G ⊆ [G] (increase);

2) [[G]] = [G] (idempotency);

3) G ⊆ H ⇒ [G] ⊆ [H] (monotonicity).

The proofs of this properties are given in [5].

Thereby, operator G 7→ [G] is closure operator in terms of [7].
From reflexivity axiom and inference rules indicated above it is

possible to get other inference rules for MVD’s [4].
Rule of pseudo-transitivity :

{X →→ Y, Y ∪W →→ Z} ⊢ X ∪W →→ Z \ (Y ∪W).

Rules of difference:
1. {X →→ Y } ⊢ X →→ Y \X;
2. {X →→ Y \X} ⊢ X →→ Y ;

3. {X →→ Y } ⊢ X →→ R \ Y .
Rule of union: {X →→ Y1,X →→ Y2} ⊢ X →→ Y1 ∪ Y2.
Rules of decomposition:

1. {X →→ Y1,X →→ Y2} ⊢ X →→ Y1 ∩ Y2;
2. {X →→ Y1,X →→ Y2} ⊢ X →→ Y1 \ Y2.

Lemma 3. The following properties are valid for n = 2, 3, . . .:

1. {X →→ Y1, . . . ,X →→ Yn} ⊢ X →→ Y1 ∪ . . . ∪ Yn;

2. {X →→ Y1, . . . ,X →→ Yn} ⊢ X →→ Y1 ∩ . . . ∩ Yn.

The proof of this lemma is constructed by the induction in the n,
according to the rules of augmentation and transitivity.

3 Axiomatic for FD’s and MFD’s

It will be recalled that a functional dependence X → Y is valid on the
table t, if for two arbitrary rows s1, s2 of table t which coincide on the
set of attributes X, their equality on the set of attributes Y is fulfilled
(see, for example [3]), that is:

(X → Y)(t) = true
def
⇔ ∀s1, s2 ∈ t(s1|X = s2|X ⇒ s1|Y = s2|Y).

364

Axiomatics for multivalued dependencies in table databases

Let there be given sets F and G of FD’s and MVD’s respectively.
A table t(R) is the model of a set F ∪G, if each dependency ϕ ∈ F ∪G

is valid on table t:

t(R) is model of F ∪G
def
⇔ ∀ϕ(ϕ ∈ F ∪G ⇒ ϕ(t) = true).

Mixed inference rules for FD’s and MVD’s are valid [4].
1. Rule of extension FD to MVD: (X → Y)(t) = true ⇒ (X →→

Y)(t) = true.

2. (X →→ Z)(t) = true&(Y → Z ′)(t) = true&Z ′ ⊆ Z &Y ∩Z =
∅ ⇒ (X → Z ′)(t) = true.

The proof of extension rule is given, for example, in the monograph
[3, p. 73] but the proof of rule 2 — in [5].

FD or MVD ϕ is semantically deduced from the set of dependencies
F ∪G, if at each table t(R), which is the model of a set of dependencies
F ∪G, dependency ϕ is valid too:

F ∪G |= ϕ
def
⇔ ∀t(R)(t model of F ∪G ⇒ ϕ(t) = true).

From above-mentioned mixed inference rules for FD’s and MVD’s
follow corollaries (the properties of semantic consequence relation):

1. F |= X → Y ⇒ F |= X →→ Y ;

2. G |= X →→ Z&F |= Y → Z ′&Z ′ ⊆ Z&Y ∩Z = ∅ ⇒ F ∪G |=
X → Z ′.

Lemma 4. Let H1 and H2 — the sets of dependencies (FD’s or

MVD’s) and T1, T2 — the sets of all their models respectively. Then

implication H1 ⊆ H2 ⇒ T1 ⊇ T2 is carried out.

Corollary 1. The following properties of the semantic consequence

relation are valid:

1. F |= ϕ ⇒ F ∪G |= ϕ;

2. G |= ϕ ⇒ F ∪G |= ϕ.

Lemma 5. The following properties of the semantic consequence rela-

tion are valid:

1) F |= X → Y ⇒ F ∪G |= X ∪ Z → Y ∪ Z for Z ⊆ R;
F ∪G |= X → Y ⇒ F ∪G |= X ∪ Z → Y ∪ Z for Z ⊆ R;

2) F |= X → Y&F |= Y → Z ⇒ F ∪G |= X → Z;

F ∪G |= X → Y&F ∪G |= Y → Z ⇒ F ∪G |= X → Z;

365

D. Bui, A. Puzikova

3) G |= X →→ Y ⇒ F ∪G |= X →→ R \ (X ∪ Y);
F ∪G |= X →→ Y ⇒ F ∪G |= X →→ R \ (X ∪ Y);

4) G |= X →→ Y&Z ⊆ W ⇒ F ∪G |= X ∪W →→ Y ∪ Z;
F ∪G |= X →→ Y&Z ⊆ W ⇒ F ∪G |= X ∪W →→ Y ∪ Z;

5) G |= X →→ Y&G |= Y →→ Z ⇒ F ∪G |= X →→ Z \ Y ;
F ∪G |= X →→ Y&F ∪G |= Y →→ Z ⇒ F ∪G |= X →→ Z \ Y ;

6) F |= X → Y ⇒ F ∪G |= X →→ Y ;
F ∪G |= X → Y ⇒ F ∪G |= X →→ Y ;

7) F ∪ G |= X →→ Z&F ∪ G |= Y → Z ′&Z ′ ⊆ Z&Y ∩ Z = ∅ ⇒

F ∪G |= X → Z ′.

FD or MVD ϕ is syntactically derived from the set of dependencies
F ∪ G (F ∪ G ⊢R ϕ), if there is a finite sequence of FD or MVD
ϕ1, ϕ2, . . . , ϕm−1, ϕm, where ϕm = ϕ and for all ∀i = 1,m− 1 each ϕi

is either the axiom of reflexivity (FD’s or MVD’s) or belongs to F ∪G

or is derived with some inference rule (complementation for MVD’s,
augmentation (for FD’s or MVD’s), transitivity (for FD’s or MVD’s),
mixed inference rules for FD’s and MVD’s) from the previous in this
sequence ϕj , ϕk, j, k < i.

As it has been stated above, let sequence ϕ1, ϕ2, . . . , ϕm−1, ϕm be
called proof of ϕ from set of dependencies F ∪G.

Let there be given certain sets F and G of FD’s and MVD’s respec-
tively.

Closure [F ∪ G]R — is a set of all FD’s and MVD’s that are syn-

tactically derived from F ∪G: [F ∪G]R
def
= {ϕ|F ∪G ⊢R ϕ}.

Lemma 6. The following properties are valid:

1) F ∪G ⊆ [F ∪G] (increase);
2) [[F ∪G]] = [F ∪G] (idempotency);

3) F ′ ∪G′ ⊆ F ∪G ⇒ [F ′ ∪G′] ⊆ [F ∪G] (monotonicity).

4) [F] ⊆ [F ∪G], [G] ⊆ [F ∪G], [F] ∪ [G] ⊆ [F ∪G].

From the propositions 1-3 it follows that operator F ∪G 7→ [F ∪G]R
is the closure operator.

Closure [X]F∪G,R of a setX (with respect to the set of dependencies
F ∪ G and scheme R) is the family of all right parts of MVD’s which
are syntactically derived from the set F ∪G:

366

Axiomatics for multivalued dependencies in table databases

[X]F∪G,R
def
= {Y |X →→ Y ∈ [F ∪G]R}.

Obviously, [X]F∪G,R 6= ∅ since, for example, X ∈ [X]F∪G,R,
(X →→ X, X → X are axioms of reflexivity); the latter statement
can be strengthened: actually performed inclusion 2X ⊆ [X]F∪G,R,
where 2X — Boolean of a set X.

Let [X]F — closure of a set X with respect to the set of FD’s F

[8]. Note that by definition [X]F ⊆ R.

Lemma 7. The following properties are valid:

1. Y ⊆ [X]F ⇒ Y ∈ [X]F∪G,R;

2. [X]F∪G,R = [[X]F]F∪G,R.

Proof. To prove proposition 1 we will construct a proof of MVD
X →→ Y from set of dependences F ∪G. Really, we have:

1. Proof of FD X → [X]F from F ([8], lemma 9);

2. [X]F → Y (axiom of reflexivity for FD’s; by assumption, Y ⊆ [X]F);

3. X → Y (with 1 and 2 according to the rule of transitivity for FD);

4. X →→ Y (with 3 according to the rule of extension FD to MVD).

Thus, by definition of closure [X]F∪G,R it follows Y ∈ [X]F∪G,R.

Let’s prove proposition 2. Let Y ∈ [X]F∪G,R; let’s show that Y ∈

[[X]F]F∪G,R. By definition of closure [X]F∪G,R there is proof of MVD
X →→ Y from the set of dependencies F ∪ G. Let’s make a proof of
MVD [X]F →→ Y from F ∪G.

1. [X]F →→ X (axiom of reflexivity for MVD’s because X ⊆ [X]F
according to [8, lemma 9]);

2. Proof of MVD X →→ Y from F ∪G which exists by assumption;

3. [X]F →→ Y \X (with 1 and 2 according to the rule of transitivity
for MVD’s);

4. [X]F →→ Y (with 3 according to the rule of augmentation for
MVD’s which can be obtained by simplification of the MVD [X]F∪(X∩

Y) →→ Y \X∪(X∩Y); really, Y \X∪(X∩Y) = Y ; [X]F ∪(X∩Y) =
[X]F , because X ∩ Y ⊆ [X]F).

Thus, we have Y ∈ [[X]F]F∪G,R.

Let now Y ∈ [[X]F]F∪G,R; let’s show that Y ∈ [X]F∪G,R. By
definition of closure [[X]F]F∪G,R there is proof of MVD [X]F →→ Y

367

D. Bui, A. Puzikova

from the set of dependencies F ∪ G. Let’s make a proof of MVD
X →→ Y from F ∪G.

1. Proof of FD X → [X]F from F ([8], lemma 9);

2. X →→ [X]F (with 1 according to the rule of extension FD to MVD);

3. Proof of MVD [X]F →→ Y from set F ∪G which exists by assump-
tion;

4. X →→ Y \ [X]F (from the latest MVD’s in sequences of proof of
items 2 and 3 according to the rule of transitivity for MVD’s);

5. [X]F → [X]F ∩ Y (axiom of reflexivity for FD’s);

6. X → [X]F ∩ Y (with 1 and 5 according to the rule of transitivity
for FD’s);

7. X →→ [X]F ∩ Y (with 6 according to the rule of extension FD to
MVD);

8. X →→ Y (with 4 and 7 according to the additional rule for MVD’s
we have MVD X →→ (Y \ [X]F) ∪ ([X]F ∩ Y); which has to be sim-
plified).

Thus, Y ∈ [X]F∪G,R.�

Observe that operator X 7→ [X]F∪G,R is not closure operator; it
is based on the fact that this operator has no idempotency property
(notion [[X]F∪G,R]F∪G,R has no sense).

Basis [X]basF∪G,R of a set X with respect to the set of dependencies
F ∪G and scheme R is subset of closure [X]F∪G,R, such that:

1. ∀W (W ∈ [X]basF∪G,R ⇒ W 6= ∅ (i.e., basis contains only nonempty
sets of attributes);

2. ∀Wi,Wj(Wi,Wj ∈ [X]basF∪G,R &Wi 6= Wj ⇒ Wi ∩Wj = ∅) (i.e.,
sets of basis are pairwise disjoint);

3. ∀Y (Y ∈ [X]F∪G,R ⇒ ∃T (T ⊆ [X]basF∪G,R & T − finite & Y =
⋃

W∈T W) (i.e., each set of attributes from closure [X]F∪G,R is equal
to finite union of some sets from basis).

Lemma 8. The following properties are valid:

1.
⋃

W∈[X]bas
F∪G,R

W = R for X ⊆ R (i.e. basic is partition of R);

2. A ∈ [X]F ⇒ {A} ∈ [X]basF∪G,R.

These lemmas are needed to establish the following main results.

368

Axiomatics for multivalued dependencies in table databases

4 Correctness and Completeness of Axiomatic

for FD’s and MVD’s

Let ϕ — FD or MVD.

Statement 1 (Correctness of axiomatic for FD’s and MVD’s). If de-

pendency ϕ is syntactically derived from the set of dependencies F ∪G,
then ϕ is derived semantically from F ∪G:

F ∪G ⊢ ϕ ⇒ F ∪G |= ϕ.

Proof. The proof is carried out by induction in the course of prov-
ing.

Basis. The length of proof is equal to 1. It means that dependency
ϕ is either trivial (FD or MVD) or ϕ ∈ F ∪G . In all these cases (if ϕ
is the trivial FD, then use corollary 1 from [8]; if ϕ is the trivial MVD,
then use lemma 1, proposition 1) semantic succession F ∪G |= ϕ takes
place.

Inductive step. Let ϕ1, ϕ2, . . . , ϕm−1, ϕm, m ≥ 2 is a proof of de-
pendency ϕ (FD or MVD) from set F ∪G. Let us consider all possible
cases for last element of sequence ϕm, where ϕm — FD or MVD.

The case when ϕm is either trivial (FD or MVD) or ϕm ∈ F ∪ G

we consider in a way analogous to that used in the basis of induction.

Let ϕm — FD which is deduced from certain FD ϕi, i < m ac-
cording to the rule of completion. It is obvious that F ∪ G ⊢ ϕi; by
induction assumption we have F ∪G |= ϕi. It remains to use lemma 5,
proposition 1.

Similar cases are considered, where:

– ϕm — FD that results from previous in this sequence of FD’s accord-
ing to the rule of transitivity (lemma 5, proposition 2 are used);

– ϕm — MVD that results from MVD ϕi, where i < m, according to
the rules of complementation or augmentation (lemma 5, proposition 3
for the rule of complementation or lemma 5, proposition 4 for the rule
of augmentation are used);

– ϕm — MVD that results from previous in this sequence of MVD’s
according to the rule of transitivity (lemma 5, proposition 5 are used);

– ϕm — MVD that results from FD ϕi, where i < m, according to the
rule of extension of FD to MVD (lemma 5, proposition 6 are used);

369

D. Bui, A. Puzikova

– ϕm — FD that results from previous in this sequence of MVD and
FD according to the mixed inference rule for FD’s and MVD’s (lemma
5, proposition 7 are used).�

Statement 2 (Completeness of axiomatic for FD’s and MVD’s). If

dependency ϕ is derived semantically from the set of dependencies

F ∪G, then ϕ is syntactically derived from F ∪G under the assumption

|R| ≥ 2 and |D| ≥ 2:

F ∪G |= ϕ ⇒ F ∪G ⊢ ϕ.

Proof. We now turn to the idea of proof [4], which we reconstruct
and complement. We will prove our statement by contradiction. Let
the set F ∪ G and the dependency ϕ (FD or MVD) are such that
F ∪G |= ϕ is fulfilled, but F ∪G ⊢ ϕ is not valid, that is ϕ /∈ [F ∪G].

To show the contradiction with F ∪G |= ϕ, make such model of set
F ∪G that dependency ϕ is not valid.

Let us fix two distinct elements a and b in the universal domain. Let
the set X is the left part of dependency ϕ (FD or MVD). Let the cover
[X]F consists of attributes A1, A2, . . . , Ak. According to property 2,
lemma 8 for i = 1, k we have {Ai} ∈ [X]basF∪G,R, that is basis [X]basF∪G,R

partitions the scheme R of cardinality n on the sets {A1} = W1, {A2} =
W2, . . . , {Ak} = Wk,Wk+1, . . . ,Wm, where m ≤ n.

The table t is constructed as follows: the number of rows is 2m−k;
for all attributes A ∈ [X]F each row s ∈ t takes values only from the
set {a}, that is s(A) = a; at the sets Wi for i = k + 1,m, rows take
values either only from the set {a} or only from the set {b} (see Table
1).

Table 1. Table t from the proof of Statement 2

[X]F Wk+1 Wk+2 . . . Wm−1 Wm

a a a . . . a a

a a a . . . a b

.

a b b . . . b b

Consider two possible cases for ϕ.

370

Axiomatics for multivalued dependencies in table databases

Let ϕ — FD of the form X → Y such that X → Y /∈ [F ∪G]. Let’s
show that FD X → Y is not valid on the table t. Since X → Y /∈

[F ∪ G], then from inclusion [F] ⊆ [F ∪ G] (lemma 6, property 4) it
follows X → Y /∈ [F]. Hence we have Y * [X]F ⊂ R ([8], lemma 9,
property 2), that is Y ∩R\ [X]F 6= ∅. Therefore, for arbitrary attribute
A ∈ Y ∩ R \ [X]F there exist such rows s1 and s2, that s1(A) = a

and s2(A) = b (by construction of table t), hence, s1|Y 6= s2|Y . On
account of the equality s1|X = s2|X (by construction of table t) we
have (X → Y)(t) = false.

Let ϕ — MVD of the form X →→ Y such that X →→ Y /∈

[F ∪ G]. Let’s show that MVD X →→ Y is not valid on the table t.
By assumption X →→ Y /∈ [F ∪G], it follows:

1. Y * [X]F , because then the MVD X →→ Y will have a proof (and
hence will belong to the set [F ∪G]):

a. Proof of FD X → [X]F from the set F , and therefore from the
set F ∪G ([8], lemma 9);

b. [X]F → Y (axiom of reflexivity for FD’s; recall that by assump-
tion Y ⊆ [X]F);

c. X → Y (with a and b according to the rule of transitivity for
FD’s);

d. X →→ Y (with c according to the rule of extension FD to
MVD);

2. Y 6=
⋃

Wi for some 1 ≤ i ≤ m because Wi ∈ [X]basF∪G,R, that is MVD
X →→

⋃

Wi ∈ [F ∪G];

3. Note also that Y 6= ∅ because MVD X →→ ∅ is the axiom of
reflexivity and it belongs to [F ∪G];

4. It still remains to consider the case where Y ∩Wi ⊂ Wi, Y ∩Wi 6= ∅

for some k + 1 ≤ i ≤ m. Suppose that MVD X →→ Y holds at the
table t. Since for arbitrary rows s1 and s2 the equality s1|X = s2|X is
fulfilled (by construction of table t), then for fixed i we choose s1 and
s2 as follows: range(s1|Wi) = {a} and range(s2|Wi) = {b}. According
to the rules of decomposition (item 2) we have {X →→ Wi,X →→

Y } ⊢ X →→ Wi \ Y ; it follows that there exists row s3, that s3|Wi =
s1|(Wi \Y)∪ s2|(Wi∩Y), that is s3|Wi takes values from both sets {a}
and {b}; this contradicts the construction of the table t.

371

D. Bui, A. Puzikova

Thus, MVD X →→ Y which does not belong to the set [F ∪G], is
not valid on the table t.

Let’s now show that table t is the model of set F ∪ G. Consider
two possible cases.

I. Given FD U → Z ∈ F ⊆ F ∪ G. We will show that (U →

Z)(t) = true, that is for arbitrary rows s1 and s2 the implication
s1|U = s2|U ⇒ s1|Z = s2|Z is valid.

There are two possible cases for the set of attributes U .

Case 1: U ∩R\ [X]F = ∅ that is U ⊆ [X]F . Then for arbitrary rows
s1 and s2 by construction of the table t we have s1|U = s2|U ; so we
need to show the equality s1|Z = s2|Z. To prove this, it is sufficient to
make sure that Z ⊆ [X]F . For this purpose we consider the following
proof of FD X → Z from the set F :

1. Proof of FD X → [X]F from the set F ([8], lemma 9);

2. [X]F → U (axiom of reflexivity for FD’s; recall that by assumption
U ⊆ [X]F);

3. X → U (the rule of transitivity is applied to the FD X → [X]F ,
which is the last element of proof 1 and FD [X]F → U 2);

4. U → Z (element of set F);

5. X → Z (with 3 and 4 according to the rule of transitivity for FD’s).

Hence we have F ⊢ X → Z, that is Z ⊆ [X]F ; it follows that
s1|Z = s2|Z.

Case 2: U ∩R \ [X]F 6= ∅. In the case when Z ⊆ [X]F , FD U → Z

is valid trivially on account of the construction of the table t.

Let Z * [X]F . We first show that FD U → Z, where Z ∩Wi 6= ∅

and at that U ∩Wi = ∅, for k + 1 ≤ i ≤ m, does not belong to the set
F . Assume the contrary. Then there exists proof for FD, which is not
valid on the table t:

1. U → Z (element of set F);

2. Z → Z ∩Wi (axiom of reflexivity for FD’s);

3. U → Z ∩Wi (with 1 and 2 according to the rule of transitivity for
FD’s);

4. Z ∩Wi → Wi (by construction of the table t; recall that ∀A′, A′′ ∈

Wi(s(A
′) = s(A′′)));

5. U → Wi (with 3 and 4 according to the rule of transitivity for FD’s);

372

Axiomatics for multivalued dependencies in table databases

6. X →→ Wi (by construction of the table t; recall that Wi ∈

[X]basF∪G,R);

7. X → Wi (with 6 and 5 according to the mixed inference rule for
FD’s and MVD’s; recall that by assumption U ∩Wi = ∅).

Thus, for some i, k + 1 ≤ i ≤ m we have the proof of FD X →

Wi, which is not valid on the table t (by construction of the table t).
Therefore, FD U → Z where Z ∩Wi 6= ∅ and at that U ∩Wi = ∅ does
not belong to the set F .

Considering that
⋃

Wi∈[X]bas
F∪G,R

Wi = R (property 1, lemma 8) we

write the set Z in the form Z =
⋃m

i=1
(Z∩Wi). Fix i and show that FD

U → Z ∩Wi is valid on the table t. Let’s consider all possible cases:

1. if Z ∩Wi ⊆ [X]F , then FD U → Z ∩Wi is valid on the table t (by
construction);

2. if Z ∩Wi ⊆ Wi for k + 1 ≤ i ≤ m then U ∩Wi 6= ∅ as it has been
showed. Let’s make the proof of FD U → Z ∩Wi:

a. U → U ∩Wi (axiom of reflexivity for FD’s);

b. U ∩ Wi → Z ∩ Wi (by construction of the table t; recall that
∀A′, A′′ ∈ Wi(s(A

′) = s(A′′) and on account of the inclusions U ∩Wi ⊆

Wi, Z ∩Wi ⊆ Wi);

c. U → Z ∩Wi (with a and b according to the rule of transitivity
for FD’s).

Thus, FD U → Z ∩ Wi, 1 ≤ i ≤ m, is valid on the table t; hence
FD U →

⋃m
i=1

(Z ∩ Wi) is valid [8, lemma 7, conclusion 6], therefore
FD U → Z is valid.

II. Let’s consider MVD U →→ Z ∈ G ⊆ F ∪ G and show that
(U →→ Z)(t) = true.

We first show that MVD U →→ Z, where Z∩Wi ⊂ Wi (Z∩Wi 6= ∅)
and at that U ∩Wi = ∅ for k + 1 ≤ i ≤ m, does not belong to the set
G. Assume the contrary. Then there exists proof for MVD, which is
not valid on the table t:

1. U →→ Z (element of set G);

2. R\Wi →→ Z (from inclusion R\Wi ⊇ Z\Wi and with 1 according to
the rule of augmentation for MVD’s we have U∪R\Wi →→ Z∪Z\Wi;
it remains to consider that U ∩Wi = ∅);

373

D. Bui, A. Puzikova

3. X →→ Wi (by construction of the table t; recall that Wi ∈

[X]basF∪G,R);

4. X →→ R \Wi (with 3 according to the rule of difference (item 3));

5. X →→ Z ∩ Wi (with 4 and 2 according to the rule of transitivity
for MVD’s we have X →→ Z \ (R \Wi), which should be simplified).

Considering that Z ∩ Wi ⊂ Wi (Z ∩ Wi 6= ∅) we have contradic-
tion with assumption that Wi belongs to basis [X]basF∪G,R. Thus, MVD
U →→ Z, where Z ∩Wi ⊂ Wi (Z ∩Wi 6= ∅) and at that U ∩Wi = ∅

for k + 1 ≤ i ≤ m, does not belong to the set G.

On account of the property
⋃

Wi∈[X]bas
F∪G,R

Wi = R (property 1,

lemma 8) write the set Z in the form Z =
⋃m

i=1
(Z ∩ Wi). Fix i and

show that MVD U →→ Z ∩Wi is valid on the table t. Let’s consider
all possible cases for Z ∩Wi:

1. Z ∩ Wi = ∅; then U →→ ∅ is an axiom of reflexivity and is valid
trivially;

2. Z ∩Wi = Wi; then U →→ Wi is valid by construction of the table
t (recall that table t consists of combinations of all possible values on
the sets of attributes Wi and R \Wi, k + 1 ≤ i ≤ m);

3. Z ∩Wi ⊆ [X]F ; then U →→ Z ∩Wi holds true by construction of
table t;

4. Z ∩Wi ⊂ Wi for k + 1 ≤ i ≤ m and Z ∩Wi 6= ∅, then U ∩Wi 6= ∅

as it has been showed.

Let’s show that U →→ Z ∩ Wi is valid for this case; that is for
arbitrary rows s1 and s2 such that s1|U = s2|U , there exists row s3
that s3 = s1|U ∪ s1|(Z ∩Wi) ∪ s2|R \ (U ∪ (Z ∩ Wi)). By conditions
s1|U = s2|U and U ∩ Wi 6= ∅, it follows equality s1|Wi = s2|Wi (by
construction of the table t). Restrict both parts of this equality to the
set Z: (s1|Wi)|Z = (s2|Wi)|Z. According to the property of restriction
operator ((U |Y)|Z = (U |(Y ∩ Z) [3, p. 24]) it follows (s1|(Z ∩Wi) =
s2|(Z∩Wi). Thus, s3 = s2|U∪s2|(Z∩Wi)∪s2|R\(U∪(Z∩Wi)) = s2 ∈ t.
Consequently, MVD U →→ Z ∩Wi is valid on table t.

From the above and by lemma 3, item 1 it follows {U →→ Z ∩

W1, . . . , U →→ Z ∩ Wk} ⊢ U →→ Z. Therefore, MVD U →→ Z is
valid on table t.�

Conditions |R| ≥ 2 and |D| ≥ 2 are obtained through a detailed

374

Axiomatics for multivalued dependencies in table databases

analysis of the proofs.

Theorem 1. The relations of semantic and syntactic succession coin-

cide for axiomatic of FD’s and MVD’s under the assumption |R| ≥ 2
and |D| ≥ 2:

F ∪G |= ϕ ⇔ F ∪G ⊢ ϕ.

The proof follows directly from Statements 1 and 2 (Section 4).

Analogous theorem holds for axiomatic of MVD’s (for axiomatic of
FD’s see [8]).

5 Conclusion

In this paper we have constructed a fragment of the mathematical the-
ory of normalization in table databases — axiomatics for multivalued
dependencies and axiomatics for functional and multivalued dependen-
cies are considered. In particular, it was produced the proof of cor-
rectness of these axiomatics and completely reconstructed the known
in the literature proof of the completeness.

References

[1] H. Darwen, C. Date, R. Fagin. A Normal Form for Preventing Re-

dundant Tuples in Relational Databases. 15th International Con-
ference on Database Theory ICDT2012 Proc. Berlin, Germany,
March 26–30, 2012, pp. 114–126.

[2] A. Bahmani, M. Naghibzadeh, B. Bahmani. Automatic database

normalization and primary key generation. CCECE/CCGEI Proc.
Niagara Falls, Canada, May 5-7, 2008, pp. 11–16.

[3] V. N. Redko, Yu.Y. Brona, D.B. Bui, S.A. Polyakov. Relational
Data Bases: Table Algebras and SQL-like Languages. Akadempe-
riodyka, Kyiv, 2001 (in Ukrainian).

375

D. Bui, A. Puzikova

[4] C. Beeri, R. Fagin, J. Howard. A complete axiomatization for

functional and multivalued dependencies. ACM-SIGMOD Confer-
ence,Toronto, Canada, Aug. 3–5, 1977, pp. 47–61.

[5] D. Bui, A. Puzikova. Axiomatics for multivalued dependencies in

table databases: correctness, completeness, completeness criteria.

5th CrISS-DESSERT Workshop,Brunow, Poland, June 29 - July
3, 2015.

[6] R. Lyndon. Notes on Logic. Van Nostrand Company, Inc., Prince-
ton, 1966.

[7] L. A. Skornyakov. Elements of the theory of structures. Nauka,
Moscow, 1982 (in Russian).

[8] D. B. Bui, A. V. Puzikova. Completeness of Armstrongs axiomatic.

Bulletin of Taras Shevchenko National University of Kyiv. Series
Physics and Mathematics, no. 3 (2011), pp. 103–108.

Dmitriy Bui, Anna Puzikova, Received June 30, 2015

Dmitriy Bui

Institution: Taras Shevchenko National University of Kyiv

Address: 64/13, Volodymyrska Street, City of Kyiv, Ukraine

Phone: +380505548802

E–mail: buy@unicyb.kiev.ua

Anna Puzikova

Institution: Taras Shevchenko National University of Kyiv

Address: 64/13, Volodymyrska Street, City of Kyiv, Ukraine

Phone:+380662748725

E–mail: anna inf@mail.ru

376

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

A Prediction System Based on Fuzzy Logic

Sergiu Chilat

Abstract

This paper presents a new way of implementing the forecast-
ing process using a neural network and a fuzzy controller. At
the first stage of the process, the neural network performs the
forecasting based on internal parameters, and then the fuzzy con-
troller adapts the results to the changes of the external parame-
ters. The main problem of neural networks in forecasting is the
impossibility to foresee the changes in the external parameters.
This problem is solved by the fuzzy controller, which reacts to
any change in the external parameters and adjusts the forecasted
data provided the neural network.

Keywords: neural network, fuzzy logic, fuzzy controller, rule
base, time series, diagnostication.

1 Introduction

Forecasting is the process of making statements about the future out-
comes of events, processes etc., based on the analysis of the circum-
stances that determine their occurrence and evolving. The anticipation
of future values of certain dimensions is a widely popular challenge due
to its importance in multiple fields like medical science, tech, economy
etc.

The complexity of the process of discrete sequences forecasting is
high due to the fact that, unlike the algorithmically well-organized
interpolation procedures, the forecasting needs extrapolation of data
from the past towards the future. Moreover, many unfamiliar factors
that influence the discrete sequences must be considered. There are
many studies dedicated to the elaboration of the mathematical model

c©2015 by S. Chilat

377

S. Chilat

of forecasting. Most of them are based on probabilistic and statistical
tools, and their use requires a considerable amount of experimental
data, which is not always available or even possible to accumulate.

In the last years, a growing interest in neural networks in addressing
forecasting problems can be observed. These are considered a most
close model to reproduce human brain activity, and can be taught to
identify regularities previously unobserved.

In the fuzzy specialty literature, the forecasting methods are divided
in 4 groups:

• based on actual data, presented as temporary strings;

• based on heuristic information, obtained from highly-qualified
specialists in the field;

• based on mathematical, biological or historical analogies;

• complex methods – combine multiple approaches [1].

In this paper a model for sales forecasting will be presented, being cre-
ated based on a neural network and a fuzzy controller connected seri-
ally. At the first stage, the neural network will generate the forecasting
data based on the data from previous sales (internal parameters). At
the second stage, the data generated by the neural network will be au-
tomatically adapted to the influence of external factors (parameters).

Thus, forecasting is a continuous adaptive process, which needs its
results to be modified in order to have optimal overall results and taking
into consideration every change in the external factors.

2 Forecasting method

The determination of objectives is one of the main purposes of forecast-
ing. The objectives selection is performed as a result of the problem
analysis. After the selection a tree of objectives classified by index of
priority is created (Fig. 1).

Another object of the study is the method of creation of forecast-
ing systems which are based on up-to-date intellectual technologies:

378

A Prediction System Based on Fuzzy Logic

Figure 1. Forecasting process

fuzzy set theory, neural networks, fuzzy logic methods and genetic al-
gorithms.

The most important issues in the forecasting models creations are
the following:

• there are some unclear links between the internal and external
parameters (fuzzy);

• there is no statistical stability in neither the input nor the output
parameters [2, 3].

Thus, the use of classical methods like extrapolation and regressive
analysis are not useful, because their main disadvantage is the need of
a big amount of statistical data for many parameters and for different
time spans.

Fuzzy sets offer the possibility to formalize values, to determine
cause-and-effect relationships between parameters and the factors that
may influence them, and to formulate a prognosis in a state of uncer-
tainty.

In Fig.2 there is the diagram of the forecasting method which is
based on fuzzy logic methods.

The algorithm to create the forecasting mathematical model is:

• establish input and output parameters;

379

S. Chilat

• based on an expert system, form fuzzy sets and select the unit of
measurement;

• define the set membership functions;

• form the rules base;

• establish the decision making algorithm [4].

Figure 2. Forecasting method diagram

While building the mathematical algorithm, the object is investi-
gated as the function (1):

P = FuzzyPrognosis(t1, t2, tn) (1)

where n – the number of terms (input parameters), P – the final solu-
tion.

380

A Prediction System Based on Fuzzy Logic

The working algorithm of the FuzzyPrognosis function is:

1. collecting the input parameters set that can influence the final
solution;

2. generate linguistic variables for each of the input parameters and
of the respective correspondences;

3. create a graph that will reflect the parameter classification;

4. collect statistical data;

5. fuzzify data (transform the precise values of input parameters
into linguistic fuzzy values);

6. the membership functions of the linguistic variables are given in
the following form (2):

fA(x) =
1

1 +
∑n

i=1

[

x−Pi

Pi

]2
(2)

where Pi are the configuration parameters;

7. get the modelling results; it is done by transforming the fuzzy
sets back into exact values (defuzzification).

The configuration of the fuzzy model is made by the completion of the
rules base and composing the membership function (2) and is repre-
sented by the form in Fig. 3.

The rule base consists of data received from experts, in a cause-
effect format(3).

S :

S1 if A1 then B1

S2 if A2 then B2

...

Sn if An then Bn

(3)

The matrix generation (3) takes place using genetic algorithms ap-
proaches: as a result of a finite number of iterations of the genetic

381

S. Chilat

Figure 3. The fuzzy decision making model

algorithm a solution is chosen (chromosome) having the maximal qual-
ity index, based on the initially announced criteria.

Every iteration of the genetic algorithm consists of several consec-
utive operations:

• initializing the set of chromosomes;

• creating the chromosome descendants as a result of combining
base chromosomes with certain mutations;

• calculating the quality level for the newly created chromosome.

In order to determine the subject of the prognosis, the analysed and
forecasted variables must be specified. It is very important to know the
level of particularization, which is influenced by many factors: avail-
ability and quality of data, the costs of the analysis of user preferences
in the system.

In cases where the best variable combination isn’t clear, different
alternatives could be tried, selecting the one with the best results.

Another important step in building a neural networks based fore-
casting system is the definition of the following three parameters: the
period, the interval and the horizon of the forecasting.

The forecasting period is the essential time unit for which the prog-
nosis is made.

The forecasting horizon represents the number of periods in future
for which the prognosis is made. For example, a forecasting for a period

382

A Prediction System Based on Fuzzy Logic

of one week could be necessary, presenting separate data for each day.
In this case, the period is one day, while the horizon – one week.

The forecasting interval – the frequency of new prognosis.
The coherent selection during a particular period or horizon is the

most difficult part of neural network based forecasting. The accuracy
of a prognosis on a particular problem, has a solid impact on the whole
forecasting system. Also, of a big influence on the prognosis accuracy
is the data set chosen for the network to learn [5].

The number of output nodes is relatively easy to specify as it is
directly related to the problem under study. For a time series fore-
casting problem, the number of output nodes often corresponds to the
forecasting horizon. There are two types of forecasting: one-step-ahead
(which uses one output node) and multi-step-ahead forecasting. Two
ways of making multi-step forecasts are reported in the literature. The
first is called the iterative forecasting as used in the Box-Jenkins model
in which the forecast values are iteratively used as inputs for the next
forecasts. In this case, only one output node is necessary. The sec-
ond called the direct method is to let the neural network have several
output nodes to directly forecast each step into the future.

3 The issue

A specific example must be investigated: forecasting the amount of
sales of an enterprise which sells food. The medium is nondetermin-
istic, because the conventional models do not allow determining with
certitude what will happen in the next moment in time and because all
factors that could possibly influence the moment are not known. There
are several financial signs [6]:

Enterprise activity

• sales history (amount of products, amount of money);

• storage operations history;

• advertising activity indicators.

External factors

383

S. Chilat

• prices for competitors services;

• market state;

• inflation level;

• currency exchange state;

• stock market index.

There are also secondary factors (Table 1), which can also influence
sales. These parameters have different significance, different values and
origins.

Table 1. Secondary factors

Parameter Importance

P1 = Products is store I(P1) = 30

P2 = Advertising intensity I(P2) = 20

P3 = Raw material price I(P3) = 60

P4 = Geographical position I(P4) = 10

P5 = Inflation I(P5) = 40

P6 = Competitors prices I(P6) = 30

P7 = Import I(P7) = 10

P8 = Market share I(P8) = 30

P9 = Customers concentration I(P9) = 10

P10 = Monetary exchange I(P10) = 20

As a consequence of the analysis made, it can be easily observed
that some parameters cannot be included in the model because of the
impossibility to obtain truthful data for them, while other ones do not
have an influence on the model dynamics big enough to be considered
and can be excluded from the model without significant loss in preci-
sion. It should be mentioned that the sales history can provide about
50-60% of the total amount of information necessary for the neural
network.

384

A Prediction System Based on Fuzzy Logic

The issue with the prognosis of sales for a company has some char-
acteristics that make the neural networks an efficient solution to pick:

• the amount of data can be relatively small (data regarding sales
of new products);

• there can be blank data in the database;

• data can be distorted;

• an adaptation mechanism of the model to newly incoming data
is necessary;

• it is quite difficult to create a linear algebra model for this case;

• the number of products can be big [7, 8].

4 Forecasting algorithm

Table 2 contains data regarding sales history (in thousands of units)
during the time between 01.01.2013 and 31.12.2014, grouped by
months. The data should be used as input for the neural network.

Next step is training. The most popularly used training method is
the backpropagation algorithm which is essentially a gradient steepest
descent method. For the gradient descent algorithm, a step size, which
is called the learning rate in ANNs literature, must be specified. The
learning rate is crucial for backpropagation learning algorithm since it
determines the magnitude of weight changes. It is well known that the
steepest descent suffers the problems of slow convergence, inefficiency,
and lack of robustness. After obtaining results from neural network and
comparing with statistical data, the following data is obtained (Fig. 4
time interval 01.2014 12.2014).

The maximum fault value of the network is of 0,3 units (6%), while
the medium fault is of 0,04 units (0,8%), which means it can be used
in forecasting.

The next step is the generation of the forecasting data for the first
6 months of the year 2015. Using the neural network, the following
results are obtained (Table 3).

385

S. Chilat

Table 2. Secondary factors

Month Sales Month Sales

01.2013 2.0 01.2014 2.3

02.2013 2.5 02.2014 3.1

03.2013 2.5 03.2014 3.2

04.2013 2.7 04.2014 3.5

05.2013 3.2 05.2014 4.0

06.2013 3.7 06.2014 4.3

07.2013 3.8 07.2014 3.5

08.2013 3.9 08.2014 4.3

09.2013 2.8 09.2014 3.3

10.2013 2.4 10.2014 2.5

11.2013 3.8 11.2014 4.3

12.2013 4.5 12.2014 4.8

Figure 4. Verification sample

386

A Prediction System Based on Fuzzy Logic

Table 3. Forecasting results

Month Sales

01.2015 2.35

02.2015 3.0

03.2015 3.1

04.2015 3.7

05.2015 4.2

06.2015 4.7

5 Adapting results to external factors

The data obtained is generated solely based on internal parameters.
But in real world, the examined results can be influenced by external
factors, too (Table 1), which are dynamic and mostly unpredictable.

Thus, there appears the problem of accuracy (the data obtained
previously can only be applied to cases that exist in isolation from
external factors – exterior has a null impact or should be ignored for
other reasons). But, in reality, these factors cannot be ignored, so, the
forecasting results (Table 3) will be inapplicable.

In order to solve this problem, the present article suggests using a
fuzzy logic controller that receives data given by the neural network
(Table 3) and values of external parameters (Table 1) and adapts data
for daily use.

At the first stage, the rule base for the controller will be composed
(using Table 1).

For parameter P1 – Products in store:

• IF products in store = few THEN sales decrease by I(P1) percent

• IF products in store = sufficient OR products in store = many

THEN sales remain at the prognosed level

For parameter P2 – Advertisement intensity:

• IF advertisement = none THEN sales decrease by I(P2) percent

387

S. Chilat

• IF advertisement = few THEN sales decrease by I(P2)/2 percent

• IF advertisement = much THEN sales increase by I(P2)/2 per-

cent

For parameter P3 – Raw material price:

• IF raw material price = high THEN sales decrease by I(P3) per-

cent

• IF raw material price = low THEN sales increase by I(P3)/2

percent

For parameter P5 – Inflation:

• IF inflation = high THEN sales decrease by I(P5) percent

• IF inflation = low THEN sales increase by I(P5)/2 percent

For parameter P6 – Competitors prices:

• IF competitors prices = high THEN sales increase by I(P6)/3

percent

• IF competitors prices = low THEN sales decrease by I(P3) per-

cent

For parameter P8 – Market share:

• IF market share = high THEN sales increase by I(P8)/4 percent

• IF market share = low THEN sales decrease by I(P8) percent

One can modify the number of the parameters or the rules base in
order to increase the controller efficiency.

Due to the fact that the adaptation process is continuous, the ap-
plication of the fuzzy controller will increase the forecasting precision,
because both the predictable and random factors will be taken into
account.

388

A Prediction System Based on Fuzzy Logic

6 Conclusions

Using an intelligent system based on neural networks, a sales-related
forecasting can be generated, based on statistical data describing sales
in the past. One of the most important advantages of the method is
the lack of the need to have a strict specification for the mathematical
model.

When forecasting for a period of several months, it is quite diffi-
cult (even when using neural networks) to predict external factors of
influence.

In order to facilitate this, an innovative method has been suggested
creating intelligent systems that incorporate neural networks together
with a fuzzy controller (connected serially), which implies dividing the
process into 2 stages:

1. Forecasting – the neural network generates temporary strings
based on internal parameters (sales history for the past 2 years);

2. Adaptation to external factors – the fuzzy controller adapts the
data produced by the neural network to certain external factors.

As a consequence, the main problem of the neural networks in fore-
casting is the impossibility to foresee the changes in external param-
eters, which is resolved by the fuzzy controller, which reacts to every
change in the external parameters and adjusts the forecasting data
accordingly.

References

[1] D. Srinivasan, S.S. Tan, C.S. Chang, E.K. Chan. Practical imple-

mentation of a hybrid fuzzy neural network for one-day-ahead load

forecasting. IEE Proc. Gener. Transm. Distrib. 1998. Vol. 145. 6.

[2] G.E.P. Box, G.M. Jenkins. Time series analysis: Forecasting and

control, San Francisco: Holden-Day, 1970.

389

S. Chilat

[3] M.H. Hassoun. Fundamentals of Artificial Neural Networks, A
Bradford book, The MIT Press Cambridge Massachusetts, 1995.

[4] N. Morariu, E. Iancu, S. Vlad. A neural network model for time se-

ries forecasting. Romanian Journal of Economic Forecasting. 2009,
No. 4. pp. 213 - 223.

[5] S. Mahfoud, G. Mani. Financial Forecasting Using Genetic Algo-

rithms. Applied Artificial Intelligence. 1996, Vol. 10, No.6. pp. 543
– 560.

[6] Basaran Filik U., Kurban M. A New Approach for the Short-Term

Load Forecasting with Autoregressive and Artificial Neural Net-

work Models. International Journal of Computational Intelligence
Research. 2007, No.3. pp. 66 – 71.

[7] W. Charytoniuk, M.S. Chen. Short-term Forecasting in Power

Systems Using a General Regression Neural Network. IEEE Trans.
on Power Systems. 1995. Vol. 7. 1.

[8] A. Garch. Forecasting Model to Predict Day-Ahead Electricity

Prices R.C. Garcia [at al.]. IEEE Transactions on Power Systems.
2005, Vol. 20, No. 2. pp. 867 – 870.

Sergiu Chilat Received July 12, 2015

Technical University of Moldova

Bd. Ştefan cel Mare, 168, MD-2004, Moldova, Chişinău

Phone: +37360333284

E–mail: chilatsergiu@gmail.com

390

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

On preservation of keys in table algebra

Aleksey Senchenko

Abstract

The problem of invariance of keys, including candidate keys,
with respect to operations of table algebras (a modern analog of
classical relational Codd’s algebra) is investigated. It is shown
that keys are invariant with respect to operations of intersection,
difference, selection, join and division, but for candidate keys
invariancy isn’t carried out. It is shown that keys, including can-
didate keys, are invariant with respect to operation of renaming.
The necessary and sufficient conditions under which the keys, in-
cluding candidate keys, are invariant with respect to operations
of projection and the active complement are found. The results of
work represent theoretical and practical interest and can be used
for a choice of optimum keys at design of relational databases.

Keywords: database, table algebra, key, candidate key.

1 Introduction

Currently, databases are widely used in almost all areas of human activ-
ity. For all the variety of different types of databases the most common
are relational (table) databases, mathematical model of which was first
proposed by E. Codd [1, 2]. From mathematical point of view, a rela-
tional database is a finite set of finite relations between different pre-
defined sets of basic data. Table algebra introduced by V.N. Red’ko and
D.B. Buy [3], is based on Codd’s relational algebra and significantly de-
velop them. They formed the theoretical foundation of modern query
language databases. Elements of the carrier of table algebra specify
relational data structures, and signature operations are based on the
basic table manipulation in relational algebra and SQL-like languages.

c©2015 by A. Senchenko

391

A. Senchenko

In relational databases the keys of the table are very important – one
or more of their attributes, values of which uniquely identify the table
entry. The keys (primary and foreign) establish binary relation such as
”one-to-many”. These links are used to maintain the integrity of the
database. Typically, the keys are defined in such a way that they are
invariant to any changes in database records. In this paper we consider
the question of invariance of the keys with respect to signature opera-
tions of table algebra. The results are of interest to select the optimal
key in the design of databases [4, 5].

2 Basic definitions

We fix a non-empty set of attributes R = {A1, . . . , An}. An arbi-
trary finite subset of R is called schema, wherein the schema can
be an empty set. A string (tuple) s of schema R is the set of pairs
s = {(A′

1, d1), . . . , (A
′
k, dk)}, whose projection on the first component

is equal to R, and attributes A′
1, . . . , A

′
k are distinct, i.e., string is a

functional binary relation. A table of schema R is a finite set of strings
of schema R, the number of strings in the table T is denoted by |T |.
Let T1 and T2 are tables of schema R. On the set of tables of schema
R we introduce some operations as follows:

1) the union
⋃

R

of two tables of schema R – is a table consisting of

those and only those strings, that belong to at least one of the source
tables;

2) the intersection
⋂

R

of two tables of schema R – is a table consisting

of those and only those strings, that belong to both of the source tables;

3) the difference T1 −
R
T2 between the two tables of schema R – is

a table consisting of those and only those strings, that belong to the
table T1 and do not belong to the table T2.

The introduction of the saturation operation requires one auxiliary
concept. Active domain of attribute A with respect to the table T is
a set DA,T = {d|∃s ∈ T ∧ (A, d) ∈ s}, consisting, saying meaningfully,
all possible values of attribute A in the strings of the table T (if the

392

On preservation of keys in table algebra

attribute is not included in the table schema, it’s active domain is
empty). Attributes of the table, the power of active domains of which
is greater than one, are said to be multi-valued, otherwise the attributes
are called one-valued. The saturation C(T) is a table

∏

A∈R

DA,T , where

R – is the schema of the table T , and
∏

– is an operator of direct
(Cartesian) product corresponding to indexing A 7→ DA,T , A ∈ R.
The active complement of table T is a table T̃ = C(T)−

R
T .

We introduce the definition of the projection operation. The
projection with respect to the set of attributes X ⊆ R is called
unary parametric operation πX , the value of which is a table con-
sisting of restrictions on X of all the strings of the original table:
πX(T) = {s | x | s ∈ T}. The definition of the restriction is stan-
dard: s | x = s

⋂

X × pr2s, where pr2s – projection of string s by the
second component. Any restriction s′ of string s we call the substring,
and it is obvious that s′ ⊆ s.

We introduce the definition of the selection operation. Unary para-
metric operation σP , that compares the table to its subtable containing
the strings for which the predicate P has the true value, is called se-
lection by predicate P : S → {true, false}, where S – the set of all
strings.

The introduction of the join operation requires one auxiliary con-
cept. Binary relations ρ and τ are called consistent (denoted ρ ≈ τ),
if ρ | X = τ | X, where X = pr1ρ

⋂

pr1τ [6]. The join is called a
binary operation ⊗, value of which is a table consisting of all unions
of consistent strings of source tables, i.e., T1 ⊗ T2 = {s1

⋃

s2 | s1 ∈

T1∧s2 ∈ T2∧s1 ≈ s2}. For a table T with the set O = {O1, . . . , Oz} of
all of the one-valued attributes and the values of their active domains
DO1,T = {o1}, . . . ,DOz ,T = {oz} it is obvious that T = πY (T) ⊗ T ′,

where Y = R−O and T ′ =
O1 . . . Oz

o1 . . . oz
, i.e., T ′ = {{(Oi, oi)} i =

1, z}.

We introduce the definition of the division operation of two tables.
Let T1 – the table of schema R1, T2 – the table of schema R2 and
R2 ⊆ R1. The division of the table T1 for the table T2 is such table of

393

A. Senchenko

schema R1 −R2: T1

R1

÷
R2

T2 = {s ∈ πR1−R2
(T1) | {s} ⊗ T2 ⊆ T1}. If such

strings s in the table πR1−R2
(T1) do not exist, by definition in this case

T1

R1

÷
R2

T2 = T∅ = ∅.

We introduce the definition of operation renaming the attributes.
The renaming is called unary, generally partial operation RTξ, where
ξ – is injective function on the set of attributes. This operation is
carried out only by renaming the attributes of tables in accordance
with the mapping parameter ξ. Informally speaking, renaming of table
is reduced to renaming of the first component of couples – elements of
strings.

Table algebra is called a partial algebra with the carrier - the set of
all tables of an arbitrary schema - and signature, which contains above
nine operations (saturation is seen as supporting the operation). The
table algebra identifies two special tables: the table Tε = {ε}, where ε –
empty string, and the schema of the table Tε is the empty set, and the
table T∅ = ∅ – empty set of arbitrary strings (including a non-empty
schema). Table T , which is not a special one, is called unsaturated if
the inequality T̃ 6= T∅ (obviously, in this case T 6= C(T)) holds.

The attribute set K ⊆ R is called the key of table T , if for any
strings s1, s2 ∈ T the implication s1 | K = s2 | K → s1 = s2 is
performed; in other words, restrictions on key attributes of all the
strings of the table T are distinct. The key K is called a candidate key
of the table T , if all its proper subsets are not the keys of T . It is easy to
see that the schema of a table will be it’s key, so the most interesting
are the so-called non-trivial keys that are proper subset of the table
schema. From the definition of the key it implies that the key of table
T∅ is any subset of the attributes of its schemes, and a candidate key –
the empty set. For a table of Tε key (including candidate) is empty set.
In practice, in the actual database, the special tables are used extremely
rare (especially table Tε), so for the sake of convenience the results only
in non-specific tables are considered, with most of the results valid for
the table T∅. Also, from the definition of the key it should be obvious
that the empty set may be the key only for specific tables or tables

394

On preservation of keys in table algebra

consisting of one string.

3 The main results

Since the keys are important in relational databases, naturally it be-
comes non-trivial the question of preserving keys (including the candi-
date keys) by signature operations of table algebras.

It is proved that the intersection preserves keys, but does not pre-
serve the candidate keys.

Theorem 1. Let T1, T2 – the tables of the schema R and K – the key

of the tables T1 and (or) T2. Then K is the key of the table T1

⋂

R

T2. If

K is the candidate key of the tables T1 and T2, then K can not be the

candidate key of the table T1

⋂

R

T2.

This example illustrates the second part of the Theorem 1.

Example 1. Let T1 =

A B C

1 1 1
1 2 2
2 1 2

and T2 =

A B C

1 1 3
1 2 2
2 1 2

. Then K =

{A,B} is the candidate key of the tables T1 and T2. Then K is the key

of the table T1

⋂

R

T2 =
A B C

1 2 2
2 1 2

, but is not the candidate key of this

table; a set of candidate keys of the table is {{A}, {B}}.

The union do not preserve the keys, i.e., in the case where K – the
key of the tables T1 and T2 (by schema R), then K may not be the key
of the table T1

⋃

R

T2.

It is proved that the difference preserves keys, but does not preserve
the candidate keys.

Theorem 2. Let T1, T2 – the tables of the schema R and K – the key

of the table T1. Then K is the key of the table T1 −
R
T2. If K is the

395

A. Senchenko

candidate key of the table T1, then K can not be the candidate key of

the table T1 −
R
T2.

This example illustrates the second part of the Theorem 2.

Example 2. Let T1 =

A B C

1 1 1
1 2 2
2 1 2

and T2 =

A B C

1 1 3
1 2 2
2 1 2

. Then K =

{A,B} is the candidate key of the tables T1 and T2. Then K is the key

of the table T1 −
R
T2 =

A B C

1 1 1
, but not the candidate key of this

table; a set of candidate keys of the table is {{A}, {B}, {C}, ∅}.

It is proved that the selection preserves keys, but does not preserve
the candidate keys.

Theorem 3. Let K – the key of the table T . Then K is the key of the

table σP (T). If K is the candidate key of the table T , then K can not

be the candidate key of the table σP (T).

This example illustrates the second part of the Theorem 3.

Example 3. Let T1 =

A B C F

1 1 1 2
1 2 2 1
2 1 2 2

. Then K = {A,B} is

the candidate key of the table T . Then K is the key of the table

σP (T) =
A B C F

1 1 1 2
2 1 2 2

, where P (S) = true ↔ (F, 2) ∈ S, but is

not the candidate key of this table; the set of candidate keys of the table

is {{A}, {C}}.

We find (in terms of active domains of attributes of tables) necessary
and sufficient conditions under which non-trivial keys of unsaturated
tables T and T̃ coincide. The requirement for unsaturation necessary
to avoid cases when T̃ = T∅, due to the fact that, as mentioned above,

396

On preservation of keys in table algebra

the key of table T∅ is any subset of the attributes of the schema of
this table. First, we formulate the criteria for the tables, all of whose
attributes are multi-valued.

Theorem 4. Let R = {A1, . . . , An} – the schema of the unsaturated

table T with all multi-valued attributes, and K = {K1, . . . ,Kq} – the

non-trivial key of T . K is the key of the table T̃ if and only if three

conditions are valid simultaneously:

a) | R−K |= 1;
b) for the attribute B, belonging to the set R − K, the equality

| DB,T |= 2 is fulfilled;

c) for all values of d1 ∈ DK1,T , . . . , dq ∈ DKq ,T the string s′ =
{(K1, d1), . . . , (Kq, dq)} ∈ πK(T), and there is only one such string

s ∈ T , that s′ = s | {K1, . . . ,Kq}.

We extend the criterion of preservation of keys for tables with one-
valued attributes. Let O = {O1, . . . , Oz} – the set of all one-valued
attributes of the table T and let DO1,T = {o1}, . . . ,DOz ,T = {oz}. Let

Y = R − O and T ′ =
O1 . . . Oz

o1 . . . oz
. Then from the definition of

the join and the active complement the equality T̃ = ˜(πY (T)) ⊗ T ′

implies obviously. As a result, one-valued attributes do not affect the
condition (a) of Theorem 4. Thus Theorem 4 can be extended to the
case of tables with one-valued attributes.

Theorem 5. Let R = {A1, . . . , An} – the schema of the unsaturated

table T , and K = {K1, . . . ,Kq} – the non-trivial key of T . K is the key

of the table T̃ if and only if three conditions are valid simultaneously:

a) the set R−K contains exactly one multi-valued attribute;

b) for the multi-valued attribute B, belonging to the set R−K, the

equality | DB,T |= 2 is fulfilled;

c) for all values of d1 ∈ DK1,T , . . . , dq ∈ DKq,T string s′ =
{(K1, d1), . . . , (Kq, dq)} ∈ πK(T), and there is only one such string

s ∈ T , that s′ = s | {K1, . . . ,Kq}.

We find necessary and sufficient conditions under which K is a key
of the table πX(T).

397

A. Senchenko

Theorem 6. Let K – the key (the candidate key) of the table T , and

K ⊆ X. Then K is the key (the candidate key) of the table πX(T).

For researching the preservation of keys by join there were consid-
ered two cases:

1) both tables-arguments have the same key;
2) both tables-arguments have different keys.
The following theorem describes the case 1.

Theorem 7. Let K – the key of the tables T1 and T2. Then K is the

key of the table T1 ⊗ T2. If K is the candidate key of the tables T1 and

T2, then K can not be a candidate key of the table T1 ⊗ T2.

This example illustrates the second part of the Theorem 7.

Example 4. Let T1 =

A B C F

1 1 2 1
1 2 2 1
2 1 1 2

and T2 =

B C G

1 2 1
2 1 2
2 2 2

. Then

K = {B,C} is the candidate key of the tables T1 and T2. Then K

is the key of the table T1 ⊗ T2 =
A B C F G

1 1 2 1 1
1 2 2 1 2

, but is not the

candidate key of this table, because {B} is the key of the table T1 ⊗ T2.

The following theorem describes the case 2.

Theorem 8. Let K1 – the key of the table T1 and K2 – the key of the

table T2. Then K1

⋃

K2 is the key of the table T1 ⊗ T2. If K1 is the

candidate key of the table T1 and K2 is the candidate key of the table

T2, then K1

⋃

K2 can not be the candidate key of the table T1 ⊗ T2.

This example illustrates the second part of the Theorem 8.

Example 5.

Let T1 =

A B C F G

1 1 1 1 1
1 1 2 2 1
2 1 1 1 2

and T2 =

B C F H J

1 1 1 1 1
1 1 1 2 2
1 2 2 1 2

. Then

K1 = {A,C} is the candidate key of the table T1 and K2 = {F,H}

398

On preservation of keys in table algebra

is the candidate key of the table T2. Then K1

⋃

K2 = {A,C,F,H} is

the key of the table T1 ⊗ T2 =

A B C F G H J

1 1 1 1 1 1 1
1 1 1 1 1 2 2
2 1 1 1 2 1 1
2 1 1 1 2 2 2
1 1 2 2 1 1 2

, but is not

the candidate key of this table, because {A,C,H} is the key of the table

T1 ⊗ T2.

We consider the preservation of key by division only when the value

of T1

R1

÷
R2

T2 is not empty. Since the schema of a (partial) result is the

set R1 − R2, where R1 – the schema of the table T1, R2 – the schema
of the table T2. We consider such cases of mutual inclusion of a key of
the table T1 and the schema R2:

1) the key of the table T1 does not intersect with the schema of the
table T2;

2) the key of the table T1 intersects with the schema of the table
T2, but the key is not fully included in the schema of the table T2.

The following theorem describes the case 1.

Theorem 9. Let R1 – the schema of the table T1, R2 – the schema of

the table T2, T1

R1

÷
R2

T2 6= T∅, K – the key of the table T1 and K
⋂

R2 = ∅.

Then K is the key of the table T1

R1

÷
R2

T2. If K is the candidate key of

the table T1, then K can not be the candidate key of the table T1

R1

÷
R2

T2.

This example illustrates the second part of the Theorem 9.

Example 6. Let T1 =

A B C F G

1 1 1 1 1
1 2 1 1 1
2 2 1 2 1

and T2 =
F G

1 1
. Then

K = {A,B} is the candidate key of the table T1, K is the key of the

399

A. Senchenko

table T1

R1

÷
R2

T2 =
A B C

1 1 1
1 2 1

, but is not the candidate key of this table,

because {B} is the key of the table T1

R1

÷
R2

T2.

The following theorem describes the case 2.

Theorem 10. Let R1 – the schema of the table T1, R2 – the schema of

the table T2, T1

R1

÷
R2

T2 6= T∅, K – the key of the table T1, K
⋂

R2 6= ∅ and

K ′ = K−(K
⋂

R2) 6= ∅. Then K ′ is the key of the table T1

R1

÷
R2

T2. If K
′

is the candidate key of the table T1, then K ′ can not be the candidate

key of the table T1

R1

÷
R2

T2.

This example illustrates the second part of the Theorem 10.

Example 7. Let T1 =

A B C F G

1 1 1 1 1
1 1 1 2 2
1 1 2 1 2
2 2 1 1 1
2 2 1 2 2

and T2 =
F G

1 1
2 2

. Then

K = {B,C,F} is the candidate key of the table T1, K ′ = K −

(K
⋂

R2) = {B,C} is the key of the table T1

R1

÷
R2

T2 =
A B C

1 1 1
2 2 1

,

but is not the candidate key of this table, because {B} is the key of the

table T1

R1

÷
R2

T2.

It is proved that the rename of attributes preserves keys and can-
didate keys.

Theorem 11. Let K = {K1, . . . ,Kq} – the (candidate) key of the table

T and let ξ[K] = {ξ(K1), . . . , ξ(Kq)}. Then ξ[K] is the (candidate) key

of the table RTξ.

400

On preservation of keys in table algebra

4 Conclusion

We have investigated the preservation of the keys, in particular, the
candidate keys, by signature operations of table algebra. It is shown
that the intersection, the difference and the selection preserve the keys,
but do not preserve the candidate keys (Theorem 1 - 3), and renaming
of attributes preserves the keys and the candidate keys (Theorem 11);
we found necessary and sufficient conditions under which the active
complement preserves the keys (Theorem 4, 5). We found criterion in
which the projection preserves the keys, including the candidate keys
(Theorem 6). It is shown that if two tables have the same keys, then
their join preserves the key and does not preserve the candidate key
(Theorem 7), and if two tables have different keys, then the union
of the keys will be the key of join of source tables (Theorem 8). It
is proved that the division preserves the keys and does not preserve
the candidate key (Theorem 9, 10). The results are of theoretical and
practical interest and can be used to select the optimal keys in designing
relational databases.

References

[1] E.F. Codd. A Relational Model of Data for Large Shared Data

Banks. Communications of the ACM, vol. 13, no 6 (1970), pp. 377–
387.

[2] E.F. Codd. The Relational Model for Database Management: ver-

sion 2. Addison-Wesley, 1990.

[3] V.N. Redko, D.B. Buy. Foundations of the theory of relational

database models. Cybernetics and Systems Analysis, vol. 32, no 4
(1996), pp. 3–12.

[4] T.M. Connolly, C.E. Begg. Database Systems: A Practical Ap-

proach to Design, Implementation and Management. Fifth edition.

Addison-Wesley, 2009.

401

A. Senchenko

[5] C.J. Date. An Introduction to Database Systems. Eighth edition.

Addison-Wesley, 2004.

[6] V.N. Redko, J.J. Brona, D.B. Buy, S.V. Polyakov. Relational data
base: table algebras and family of the SQL languages. Academperi-
odica, 2001.

Aleksey Senchenko Received June 27, 2015

Taras Shevchenko National University of Kyiv,

03187, Kyiv, Glushkova av., 4d.

E–mail: senchenko as@mail.ru

402

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Human Resource Selection Process by Using

Various Fuzzy Logic Techniques

Mustafa Tinkir, Burcu Doganalp, Serkan Doganalp

Abstract

Because of the fact that today human resources has been ac-
cepted as one of the most important source of competitive advan-
tage of an organization, finding the right person for the job has
become as a vital human resource management function. This
paper presents mamdani and sugeno type fuzzy inference system
modeling techniques being used while group decision making in
the fuzzy environment and displays the methods process with
an empirical application. For this purpose, as decision makers,
two top managers in a business organization that is in the list of
First 500 Big Industrial Organizations of Turkey have evaluated
decision criteria and the candidates by using linguistic variables
for the position of mechanical maintenance manager. These ver-
bal data have been transformed into triangular fuzzy numbers for
both modeling techniques. Prediction models have been obtained
by using fuzzy logic and ANFIS toolboxes of MATLAB respec-
tively and their applications on process have been realized via
Simulink. All obtained prediction results have been compared
with table according to prediction performances of techniques.
This study shows that for deciding more accurately and effec-
tively in human resource selection process, various fuzzy logic
models are considerably suitable as an approach of fuzzy multi-
criteria group decision making.

Keywords: Human Resource Selection, Decision Making,
Mamdani, Sugeno Fuzzy Inference System.

c©2015 by M. Tinkir, B. Doganalp, S. Doganalp

403

M. Tinkir, B. Doganalp, S. Doganalp

1 Introduction

Because of that human resources are one of the core competences for an
organization to gain and enhance competitive advantage in a knowledge
economy [1] today, the enterprises compete with each other for talent.
In this context, finding the right person for the vacant job has become
one of the most important and indispensable activities [2]. Among the
functions of human resource management, human resource selection
significantly affects the quality of employees and administration, and
hence it has attracted intensive attention and is an important topic for
the organizations [1]. Increasing competition in global markets urges
organizations to put more emphasis on human resource selection pro-
cess [3]. The growing importance of human resource selection process,
in addition to that it is a very expensive and time taking up activity,
makes the approach designing to be used in this process as a prerequi-
site for the organizations [2], and has brought about the usage of ana-
lytical decision making approaches [3]. The human resource selection
activity can be described as a decision problem, that it is an uncertain
group decision making process, and contains information which is vague
and fuzzy [4]. It is clear that decision makers in charge of determining
the most appropriate job candidate for the vacant position prefer to use
natural language [5]. Because of expressing verbal information, using
natural language causes vague information [6]. Decision making can
be based on decision makers imprecise perception relying on his/her
subjective ideas, experience and beliefs [7]. This situation can be con-
sidered also for human resource selection as a decision making process.
It is common sense that personnel selectors tend to include as many el-
ements as possible in their decision making process, without being able
to clearly define which element has the greatest impact on the outcome
of a decision [8]. Decision made under these circumstances is defined
as subjective judgment [9]. Many real-world problems including hu-
man resource selection have been solved with the fuzzy logic for the
last twenty five years [10]. In a vague condition, fuzzy logic approach
can provide an attractive connection to represent uncertain information
and can aggregate them properly [11]. Since the fuzzy logic approach

404

Human Resource Selection by Fuzzy Logic . . .

provides a simultaneous solution to a complex system of competing
objectives, it seems to be a proper tool for an organization’s staff allo-
cation problem [12]. Fuzzy set theory can be applied to other business
problems whenever there is a need to do modeling with imprecise rea-
soning processes or ambiguity in human decision-making [13]. In this
context, fuzzy logic theory appears as an effective tool to incorporate
imprecise judgments inherent in the human resource selection process
[14]. The purpose of this study is finding the most suitable candidate
for the machine maintenance manager position of the selected organi-
zation with mamdani and sugeno type fuzzy inference system modeling
techniques. Triangular type membership functions are used to consti-
tute mamdani and sugeno type-1 fuzzy inference systems.

2 Research Design and Methodology

2.1 Data Set Development

Human resource selection process for machine maintenance manager
position of industrial organization has been realized in respect of Table
2. Accordingly, 5 candidates attended to the interview for the posi-
tion and they were assessed in terms of decision criteria predetermined
by organizations human resource management department. Interview
was carried out of 16 points, and candidates’ scores were calculated as
a percentage. After determining interview scores, two candidates (1.
candidate and 4. candidate) scored over 80 points in the interview were
subjected to the English test. English test was applied and assessed
out of 1200 points. As it can be seen from the Table 2, interview score
of the 1. candidate was higher than the score of 4. candidate. It was
because of the assessment score in respect to the business knowledge
criteria. In contrast, open communication assessment score of the 4.
candidate was higher than the 1. candidate. But the English test score
of 4. candidate was higher. In this context, the human resource de-
partment considered that business knowledge could be improved in the
course of time. Therefore 4. candidate was preferred for the proposed
position.

405

M. Tinkir, B. Doganalp, S. Doganalp

Table 1. Human Resource Selection for Machine Maintenance Manager
Position of Industrial Organization

Position Machine Maintenance Manager
Evaluation
Criteria

Criteria
Weight

1.Cndt 2.Cndt 3.Cndt 4.Cndt 5.Cndt

Open com-
munication

4 3 2 3 4 3

Drawing
lessons from
mistakes

3 3 3 2 3 2

Working
with strat-
egy and
targets

3 3 3 2 3 2

Skill of
thinking and
learning

3 3 3 2 3 2

Business
knowledge

3 3 1 2 1 2

Score 16 93.75% 75% 68.75% 87.5% 68.75%
1.Candidate Out of 1200 584 Two candidates scored over 80

points in the interview were
subjected to the English test.4.Candidate Out of 1200 650

Interpretation Interview score of the 1. candidate was higher than the
score of 4. candidate. It was because of the assessment
score in respect to the business knowledge criteria. In
contrast, open communication assessment score of the
4. candidate was higher than the 1. candidate. But the
English test score of 4. candidate was higher. In this
context, the human resource department considered that
business knowledge could be improved in the course of
time. Therefore 4. candidate was preferred for the
proposed position.

406

Human Resource Selection by Fuzzy Logic . . .

3 Fuzzy Logic Modeling Techniques

3.1 Mamdani Type Fuzzy Logic Model

The field of fuzzy system has been making a big progress motivated
by the practical success in modeling and control of industrial process
[15]. Fuzzy systems can be used as system modeling. In this case fuzzy
modeling provides appropriate system outputs from real experimental
data sets. The fuzzy logic model uses a form of quantification of impre-
cise information (input fuzzy sets) to generate by an inference scheme,
which is based on a knowledge base of modeling. The advantage of this
quantification is that the fuzzy sets can be represented by a unique lin-
guistic expression, such as small, medium and large, etc. The linguistic
representation of a fuzzy set is known as a term, and a collection of such
terms defines a term-set, or library of fuzzy sets. Fuzzy logic converts
a linguistic modeling strategy usually based on expert knowledge into
a systems fuzzy logic modeling strategy. Fuzzy logic is made of four
main components: (1) Fuzzifier; (2) Knowledge base containing fuzzy
IF-THEN rules and membership functions, (3) Fuzzy reasoning; and
(4) Defuzzifier interface. The basic configuration of the fuzzy system
with fuzzifier and defuzzifier used in this study is shown in Figure 1.

Figure 1. The basic configuration of the fuzzy system

In this paper, a Mamdani type-1 fuzzy logic modeling for human re-

407

M. Tinkir, B. Doganalp, S. Doganalp

source selection have been realized and compared with actual selection
of selected industrial organization and results of ANFIS type fuzzy logic
technique. Primarily we have obtained real data sets from organiza-
tions human resource selection process to create inputs and outputs of
Mamdani type fuzzy logic model. Fuzzy logic model membership func-
tions and rule bases have been formed by criteria of human resource
selection process of the selected industrial organization.

Figure 2. Fuzzy logic modeling for human resource selection

In Figure 2, fuzzy logic modeling for the selected organizations hu-
man resource selection process has been shown. In this configuration
we can say that fuzzy logic model has five inputs as open communica-
tion, drawing lessons from mistakes, working with strategy and targets,
skill of thinking and learning, and business knowledge. And also it has
single outputs as decision making output. Moreover 127 rules used
for mamdani type fuzzy inference model and membership functions for
each input and output is given in Figure 3.

408

Human Resource Selection by Fuzzy Logic . . .

Figure 3. Membership functions of Mamdani type fuzzy logic model:
a. Membership functions of open communication input. b. Member-

ship functions of drawing lessons from mistakes input. c. Membership

functions of working with strategy and targets input. d. Membership

functions of skill of thinking and learning input. e. Membership func-

tions of business knowledge input. f. Membership functions of decision

making output.

409

M. Tinkir, B. Doganalp, S. Doganalp

3.2 Sugeno Type Fuzzy Logic Model

Two of the difficulties with the design of any fuzzy logic modeling are
the shape of the membership functions and choice of the fuzzy rules. In
fact, decision-making logic is the way in which the model output is gen-
erated. It uses the input fuzzy sets and the decision is taken according
to the values of the inputs. Moreover, the knowledge base comprises
knowledge of application domain and the attendant modeling goals. It
consists of a database and a fuzzy logic model rule base. The fuzzi-
fication uses membership functions to determine the degree of inputs.
The purpose of modeling is to obtain suitable outputs according to real
human resource selection. In this study, sugeno-type inference system
is used to create fuzzy logic model of proposed system. It applies a
combination of the least-squares method. Fuzzy logic model of hu-
man resource selection has three membership functions for each input.
Triangular type membership functions have been used in fuzzification
process. Membership functions and rules of sugeno type fuzzy logic
model are given in Figure 4. Fuzzy logic rule base is made of 243 rules
and these rules have been determined by adaptive neural network based
fuzzy inference system (ANFIS) of human resource selection. ANFIS
ensures to obtain optimum range of membership functions and rules
which are based on real selection data easily. But it permits only one
output. Anfis outputs are constant values not fuzzy.

3.3 Adaptive Neural Network

Neural networks are composed of simple elements operating in par-
allel. These elements are inspired by biological nervous systems. As
in nature, the network function is determined largely by the connec-
tions between elements. We can train a neural network to perform a
particular function by adjusting the values of the connections (weights)
between elements. Commonly neural networks are adjusted, or trained,
so that a particular input leads to a specific target output. Such a sit-
uation is shown in Figure 5. There, the network is adjusted, based
on a comparison of the output and the target, until the network out-
put matches the target. Typically many such input/target pairs are

410

Human Resource Selection by Fuzzy Logic . . .

Figure 4. Membership functions and rules of Sugeno type fuzzy logic
model

needed to train a network. Neural networks have been trained to per-
form complex functions in various fields, including pattern recognition,
identification, classification, modeling, speech, vision, and control sys-
tems.

We have followed these steps for creating ANFIS modeling shown
below:

• 20 training and 5 test data have been used for neural network
based on ANFIS modeling.

• The number and type of membership functions have been deter-
mined.

• Hybrid learning algorithm and 20 epochs have been chosen to
train network.

3.4 Hybrid Learning Algorithm

In this study, the forward hybrid learning algorithm has been used for
the neural network part of the ANFIS controllers shown in Figure 6.

411

M. Tinkir, B. Doganalp, S. Doganalp

Figure 5. Neural network structure

The hybrid learning algorithm was described in the literature [16,17].
Nearly 20 epochs later, error rate is closed to 2.10-5. In the forward
pass of the hybrid learning algorithm, node outputs go forward until
layer 4 and the consequent are identified by the least-squares method.
When the values of the premise parameters are fixed, the overall output
can be expressed as a linear combination of the consequent parameters.

Figure 6. Training of NN forward model

The ANFIS is a fuzzy Sugeno model putting adaptive capability
in framework to facilitate learning and adaptation. Such framework
makes the ANFIS modeling more systematic and less reliant on expert
knowledge. To present the ANFIS architecture, two fuzzy IF-THEN

412

Human Resource Selection by Fuzzy Logic . . .

rules based on a first-order Sugeno model are considered:

Rule 1: If (x is A1) and (y is B1), then (f1 = p1x+ q1y + r1).

Rule 2: If (x is A2) and (y is B2), then (f2 = p2x+ q2y + r2).

where x and y are the inputs, Ai and Bi are the fuzzy sets, fi are the
outputs within the fuzzy region specified by the fuzzy rule, pi ; qi and
ri are the design parameters that are determined during the training
process [18]. The ANFIS architecture to implement these two rules is
shown in Figure 7, in which a circle indicates a fixed node, whereas a
square indicates an adaptive node.

When the premise parameters are not fixed, the search space be-
comes larger and the convergence of the training becomes slower. A
hybrid algorithm combining the least-squares method and the gradient
descent method is adopted to solve this problem. The hybrid algorithm
is composed of a forward pass and a backward pass. The least-squares
method (forward pass) is used to optimize the consequent parame-
ters with the premise parameters fixed. Once the optimal consequent
parameters are found, the backward pass starts immediately. The gra-
dient descent method (backward pass) is used to adjust optimally the
premise parameters corresponding to the fuzzy sets in the input do-
main. The output of the ANFIS is calculated by employing the conse-
quent parameters found in the forward pass. The output error is used
to adapt the premise parameters by means of a standard backward
pass algorithm. It has been proven that the hybrid algorithm is highly
efficient in training the ANFIS [19]. Fuzzy logic modeling is by far the
most successful applications of the fuzzy set theory and fuzzy inference
systems. Due to the adaptive capability of ANFIS, its applications to
adaptive modeling and learning modeling are immediate. For this pur-
pose, the adaptive network-based fuzzy inference system has been used
to optimize the fuzzy IF-THEN rules and the membership functions
to derive a more efficient fuzzy model. The proposed ANFIS model
combined the neural network adaptive capabilities and the fuzzy logic
qualitative approach [19].

413

M. Tinkir, B. Doganalp, S. Doganalp

Figure 7. (a) TSK fuzzy inference system with two inputs and two
rules. (b) Architecture of ANFIS of first order TSK model with two
inputs.

414

Human Resource Selection by Fuzzy Logic . . .

3.5 Defuzzification Process

Once the fuzzy inference system is activated, rule evaluation is per-
formed and all the rules are true and fired. Utilizing the true out-
put membership functions, defuzzification is then applied to determine
a crisp control action. The defuzzification is to transform the fuzzy
output into an exact model output. For Sugeno-style inference, we
have to choose whether wtaver (weighted average) or wtsum (weighted
sum) defuzzification method to use. In defuzzification process of sugeno
type fuzzy logic modeling of human resource selection, the method of
weighted average (wtaver) has been used.

4 Results and Discussion

The effectiveness of the proposed modeling techniques have been tested
by using MATLAB/Simulink program and the algorithm given in Fig-
ure 8 has been used to form simulation block diagram. The purpose
of the models is to find the most appropriate candidate for machine
maintenance manager position of the selected industrial organization
according to its selection process.

Figure 8. The algorithm used for all Fuzzy Logic Modeling Techniques

Mamdani and ANFIS type models have been created by real inter-

415

M. Tinkir, B. Doganalp, S. Doganalp

view results of the human resource department and five inputs have
been used as decision criteria determined by the department. Last de-
cision linguistic variable was used as single output of the models. Every
candidate has been assessed via their curriculum vitae by the human
resource department and then the candidates found to be appropriate
after the assessment have been invited to the interview. Finally as
a last stage in the selection process, two candidates whose interview
scores were higher than 80 points were subjected to the English test.

Figure 9. Simulink Diagram for Mamdani and Sugeno Type Fuzzy
Logic Modeling

The program for fuzzy models has been written for this purpose
by using algorithm and English exam scores of the candidates scored
over 80 points in the interview have been added to simulation program
to evaluate the selection process. As a result, fuzzy models have been
used to select the right candidate instead of human resource depart-
ments decision making process. Comparisons of the models with real
interview results are given in Table 3. According to the decision of the
human resource department for the interview:

1. candidate and 4. candidate scored over 80 points in the interview
were subjected to the English test. After that English test was applied
and assessed out of 1200 points. Interview score of the 1. candidate was
higher than the score of 4. candidate. It was because of the assessment
score in respect to the business knowledge criteria. In contrast, open
communication assessment score of the 4. candidate was higher than

416

Human Resource Selection by Fuzzy Logic . . .

the 1. candidate. But the English exam score of 4. candidate was
higher. In this context, the human resource department considered that
business knowledge could be improved in the course of time. Therefore
4. candidate was preferred for the proposed position.

Table 2. Comparison of Fuzzy Logic Techniques with Decision of De-
cision Makers

Interview Real Mamdani with ANFIS with
Scores Interview 127 rules 243 rules
1. Candidate 93.75 94.20 94.05
4. Candidate 87.50 88.01 87.92
English Test Score Real Interview Mamdani ANFIS
1. Candidate 584 584 584
4. Candidate 650 650 650
Last Decision 4. Candidate 4. Candidate 4. Candidate

In addition to these selection steps, mamdani and anfis models have
evaluated the 1. and 4. candidates and scored 94,20 and 94,05 points
for them respectively. Other candidates were eliminated as a result of
the real interview. English test scores of the two candidates were given
to program to learn their scores. So convergence of the models to real
selection was resulted in the last decision as 4. candidate. When the
mamdani and anfis type models were compared, first interview scores
of 1. and 4. candidates are close to each other. Moreover, real scores
and 116 rules differences were appeared in models. Prediction results
of 1. candidate are %99.5 and %99.6, results of 4. candidate are %99.4
and %99.5 for the first interview of mandani and anfis respectively.
Consequently, sugeno type-1 Anfis model with a very small prediction
margin is more useful for proposed selection than mamdani type fuzzy
model. In mamdani model these 127 rules were written one by one
according to criteria weights of the decision makers. 243 rules used
in anfis model were determined automatically by anfis toolbox of the
MATLAB by using mamdani data base. The adaptive capability of

417

M. Tinkir, B. Doganalp, S. Doganalp

the anfis model depends on its neural network base and assures future
prediction about human resource selection. This capability can be
tested by changing criteria weights of selection process.

5 Conclusion

This paper presents mamdani and sugeno type fuzzy inference system
modeling techniques being used while group decision making in the
fuzzy environment and displays the methods process with an empirical
application. For this purpose, as decision makers, two top managers
(human resource manager and plant manager) in a business organi-
zation that is in the list of First 500 Big Industrial Organizations of
Turkey has evaluated decision criteria and the candidates by using lin-
guistic variables for the position of mechanical maintenance manager.
These verbal data have been transformed into triangular fuzzy num-
bers for mamdani model and also triangular type membership func-
tions have been used to constitute both mamdani and sugeno type-1
fuzzy inference systems. According to the models, the candidates have
been ranked from the best to the worst with respect to the calculated
closeness coefficients. Mamdani and sugeno type fuzzy decision making
models have been obtained by using fuzzy logic and ANFIS toolboxes of
MATLAB software respectively and their applications on process have
been realized via Simulink/MATLAB. All obtained prediction results
have been compared with table according to modeling performances
of used techniques. This study shows that for deciding more accu-
rately and effectively in the human resource selection process, various
fuzzy logic models are considerably suitable as an approach of fuzzy
multi-criteria group decision making. Two aspects of this study that
can contribute to the literature have been considered. Firstly, in the
literature to date there isn’t any investigation predicting the most ap-
propriate candidate for the machine maintenance manager position by
using these two methods and comparing the results of them. Therefore
this study investigates the applicability of two fuzzy logic methods for
predicting the aforementioned selection process and it defines which
method is more useful with comparing rule tables. Secondly, expert

418

Human Resource Selection by Fuzzy Logic . . .

systems such as fuzzy logic can bring a new insight to human resource
selection process which has great importance for the organizations and
also affects the future performance of them. More effective decisions
can be available with such fuzzy modeling techniques.

References

[1] H. Lin. Personnel selection using analytic network process and

fuzzy data envelopment analysis approaches. Computers δ Indus-
trial Engineering, vol. 59, (2010), pp. 937–944.

[2] P.C. Chen. A fuzzy multiple criteria decision making model in em-

ployee recruitment. International Journal of Computer Science and
Network Society, vol. 9(7) (2009), pp. 113–117.

[3] M. Dursun, E.E. Karsak.A fuzzy MCDM approach for personnel

selection. Expert Systems with Applications. vol. 37 (2010), pp.
4324–4330.

[4] A. Kelemenis, K. Ergazakis, D. Askounis. Support managers se-

lection using an extension of fuzzy TOPSIS. Expert Systems with
Applications. vol. 38 (2011), pp. 2774–2782.

[5] M.Z. Ramadan. Effective staff selection tool: fuzzy numbers and

memetic algorithm based approach. International Journal of Engi-
neering δ Technology vol. 9, no. 10 (2009), pp. 54–65.

[6] A.L. Zadeh. The concept of linguistic variable and its application

to approximate reasoning i. Information Sciences vol. 8 (1975), pp.
199–249.

[7] T.L. Saaty, L.G. Vargas. Decision making with the analytic netwok

process: economic, political, social, and technological applications

with benefits, opportunities, cost, and risks. New York: Springer
Science Business Media, 2006.

419

M. Tinkir, B. Doganalp, S. Doganalp

[8] S. Petrovic-Lazarevic. Personnel selection fuzzy model. Interna-
tional Transactions in Operational Research vol. 8 (2001), pp. 89–
105.

[9] M. Ayub,Md.J. Kabir, Md.G.R. Alam.Personnel selection method

using analytic network process (ANP) and fuzzy concept. Proceed-
ings of 12th International Conference on Computer and Informa-
tion Technology. December 21-23 2009, Dhaka, pp. 373–378.

[10] A. Golec, E. Kahya. A fuzzy model for competency-based employee

evaluation and selection. IComputers δ Industrial Engineering vol.
52 (2007), pp. 143–161.

[11] J.R. Chang, T.H. Ho, C.H. Cheng, A.P. Chen. Dynamic fuzzy

OWA model for group multiple criteria decision making. Soft Com-
puting vol. 10 (2006), pp. 543–554.

[12] W. Kwak. fuzzy set approach in audit staff

planning problems. http://www.wseas.us/e-
library/conferences/jamaica2000/papers/157.pdf, Date:
21.12.2010.

[13] W. Kwak, Y. Shi, K. Jung. Human resource allocation in a CPA

firm: a fuzzy set approach. Review of Quantitative Finance and
Accounting vol. 20 (2003), pp. 277–290.

[14] E.E. Karsak. Personnel selection using a fuzzy MCDM approach

based on ideal and anti-ideal solutions. In M. Kksalan δ S. Zionts
(Eds.), Multi criteria decision making in the new millennium Lon-
don: Springer-Verlag London Limited. (2001), pp. 393–402.

[15] A. Berber, M. Tinkir, S.S. Gultekin, I. Celikten. Prediction of

a diesel engine characteristics by using different modeling tech-

niques. International Journal of Physical Science vol. 6 no.16
(2011), pp. 3977–3990. IJPS-ISSN 1992 1950.

[16] P. Strobach. Linear prediction theory: a mathematical basis for

adaptive systems. New York: Springer-Verlag. (1990).

420

Human Resource Selection by Fuzzy Logic . . .

[17] K.S. Narendra, K. Parthsarathy. Identification and control of dy-

namical systems using neural networks. IEEE Trans. Neural Netw.
vol. 1 no.1 (1990), pp. 4–27.

[18] S.S. Haykin. Adaptive filter theory. (2nd Edition). New Jersey:
Prentice Hall. (1991).

[19] M. Tinkir, U. Onen, M. Kalyoncu. Modeling of neuro-fuzzy control

of a flexible link. Proceedings of the Institution of Mechanical En-

gineers. Part I Journal of Systems and Control Engineering. vol.
224 (2010), pp. 529–543.

Mustafa Tinkir, Burcu Doganalp, Serkan Doganalp Received June 29, 2015

Mustafa Tinkir

Institution Necmettin Erbakan University Address Department of Mechanical En-

gineering, Faculty of Engineering and Architecture Necmettin Erbakan University,

Konya, TURKEY Phone: (+90)5394590892 E–mail: mtinkir@konya.edu.tr

Burcu Doganalp

Institution Selcuk University Address Department of Business Administration, Fac-

ulty of Economics and Administrative Sciences, Selcuk University,Konya, TURKEY

E–mail: burcudoganalp@selcuk.edu.tr

Serkan Doganalp

Institution Necmettin Erbakan University Address Department of Geomatics En-

gineering, Faculty of Engineering and Architecture Necmettin Erbakan University,

Konya, TURKEY E–mail: sdoganalp@konya.edu.tr

421

Part 11

Neural networks,

soft computing

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Neural network based model for emotion

recognition∗

Veaceslav Albu

Abstract

In this paper we present the architecture of an the neural net-
work model for recognition and classification of basic human emo-
tions from Kinect camera input. The proposed system utilizes a
learning algorithm, which combines supervised and unsupervised
learning for automatic emotion classification. Using computer
vision and machine learning algorithms, emotional states of mul-
tiple targets are inferred from facial expressions recorded visually
by a camera. In the proposed system, human facial expressions
are recorded, recognized, and analyzed to give statistical feedback
of the overall emotions of a number of targets within a certain
time frame. This feedback can provide important measures for
user response to a chosen system.

Keywords: emotion classification, neural networks, machine
learning, Kinect.

1 Introduction

Facial expressions are one of the strongest visual methods to convey
emotions and one of the most powerful means for communication be-
tween humans. Understanding these emotions by the means of com-
puter vision is one of the most impurtant tasks of modern marketing
systems. Facial imaging techniques allow recording and recognition of
facial expressions, passively recorded via cameras and could be applied
to better measure consumer response to marketing stimuli or to detect
fraudulent actions of a customer. This method allows to:

c©2015 by V. Albu
∗This work was supported by NATO.NUKR.SFPP 984877. Modeling and Mit-

igation of Social Disasters Caused by Catastrophes and Terrorism

423

V. Albu

• get the consumer feedback without direct and intrusive question-
ing

• get the consistent response accross cultures

• provide a good performance on both online and offline platforms

• evaluate both video and static stimuli

Conventional methods are often unable to retrieve objective feed-
back from a customer and could be easily mislead by the person with
fraudulent intentions. This has led to the increase in the interest in
neuroscience-influenced methods, such as EEG, fMRU etc., together
with the computer vision technologies.

In this paper, we provide a description of a system, inspired from
both the advances in neurophysiologically-based methods and state-of-
the-art machine learning algorythms.

The rest of the paper is organised as following. First, we will give
a brief overview of the most prominent research in the field of emo-
tion detection and recognition. Next, we provide a description of the
proposed Kinect input algorithm and the architecture of the neural
network model. In the results and discussion section, we suggest the
possible application of the proposed architecture.

2 Background

Before describing the architecture of the proposed system and its appli-
cations, it is important to appreciate the academic context within the
science of understanding and interpreting human facial expressions.
In our research, we utilise Damasio’s definition of emotions [1], i.e. we
will follow Damasio in treating emotions as guides or biases to behaviors
and decision making, action plans in response to internal or external
stimuli and integral part of cognition and developmental processes.

There is a number of models of emotions developed for different
purposes like formalization, computation or understanding. Since this
text is not a thorough review of models of emotions, we will only discuss

424

NN-based model for emotion recognition. . .

a couple of them. The thing that must be mentioned first of all, is the
fact that all models of emotions can be classified into discrete and
continuous. Discrete models work with limited sets of emotion. There
might be from two (like anger and happiness) to many. Continuous
models rather represent the full spectrum of human emotions in some
space (usually 3D or 2D). There are combinations of those, when you
bring some uncertainty into discrete models in the form of probabilities
of certain emotions happening at time t and thus implement some quasi
continuous model.

The original reasearch in the field of emotion recognition can be
traced to Charles Darwin, upon whose work Paul Erkman et al. devel-
opted the theoretical framework for emotion detection [2]. This model
was developted over years and ended up with six basic emotions: anger,
disgust, fear, happiness, sadness, and surprise [2]. Important feature
of Erkman’s model is that those six basic emotions are semantically
distinct. This approach has one minor problem, common to all dis-
crete models of emotions. They are related to cultural and linguistic
differences which do not allow those models to be truly universal. This
problem is partly eliminated in the dimensional models. Dimentional
models can be traced back to Wundt [3], but basic research in this field
was presented by Mehrabian. He proposed to use 3D space with axes
pleasure, arousal, and dominance to describe emotions. Any emotion
or some blend of emotions can be represented as a point in this PAD
cube. There are variation of this model, where different axes are used,
but most of them end up with 3D space.

In this work, we utilise a simplified approach, which can be de-
scribed as classification of emotions on 2D similarity map. The pro-
posed network uses the input from a Kinect camera as an input and
provides a classification of the detected emotion with the regard of five
pre-defined emotion categories.

3 Materials and Methods

Recently, a large number of algorithms for facial expression detection
were introduced [4-7]. However, the majority of them use the images

425

V. Albu

Figure 1. Microsoft Kinect sensor

obtained by web-cameras and static images. We propose a system real-
time analysis of emotions (facial expression and pulse analysis) which is
performed with the help of state-of-the art biometric techniques, such
as Kinect data analysis (Fig.1). The resulting measurements are com-
pared with the statistical data for distributed on-land systems (e.g.
kiosks, ATMs etc.) and forecasting system will be built with the ma-
chine learning techniques.

We propose the following algorithm for visual information process-
ing:

1 First, we use cameras and 3D sensors such as the Microsoft Kinect
to detect facial features in order to recognize and classify emo-
tions.

2 Second, we apply computer vision techniques for feature extrac-
tion and pattern recognition.

3 We apply machine learning (neural networks) for emotion detec-
tion and classification.

4 We use recorded statistical data from the machine transactions
or logs. We train a modular neural network together with the
emotion records to provide the analysis of the events. We can use
the trained networks for further event analysis and forecasting.

426

NN-based model for emotion recognition. . .

4 Network architecture

The choice of neural network model was performed as following: we
have examined several existing neural network architectures and se-
lected the one with better performance results (computational costs
and recognition rate) and selected the most simple network that allows
the usage of the Kinect output (point cloud) within the sort time and
good recognition rate.

The architecture of our model is based on the notion of the self-
organized map (SOM), proposed by Kohonen [8]. This kind of neu-
ral network is trained using unsupervised learning to produce a two-
dimensional map of the input space of the training samples. SOM
detects regularities and correlations in its input and adapt their future
responses to that input. The neurons of competitive networks learn to
recognize groups of similar input vectors in such a way that neurons,
which are located physically near each other in the neuron layer, re-
spond to similar input vectors.

The main idea in the SOM learning process is that for each input
vector the winner unit is selected. The winner unit (which is called best
matching unit, BMU) and the nodes in its neighbourhood are changed
closer to in the input data. If the number of available inputs is re-
stricted, they are presented re-iteratively to the SOM algorithm. The
Kohonen′ network is trained with the method of successive approxima-
tions.

The conventional SOM algorithm has a number of restrictions, and
the main one is its ability to deal only with the vectorized data. To
solve this problem, a number of modifications of the conventional SOM
have been proposed. We used one of these modifications as a basis for
constructing our model.

Tokunaga and Furukawa have proposed a significant variation of
the conventional SOM, called the modular network SOM (mnSOM)
[9]. In their model, each vector unit of the conventional SOM is re-

427

V. Albu

placed by a functional module. These modules are arrayed on a lattice
that represents the coordinates of the map. Authors regard the case
of a multi-layer perceptron (MLP) module as the most commonly used
type of neural network. This architecture was designed to keep the
backbone algorithm of the SOM untouched. The algorithm of the mn-
SOM is a generalization of a conventional SOM that inherits many
properties from a conventional version of the algorithm and also adds
several new original properties.

This architecture has the number of advantages. First, every mod-
ule in the mnSOM has the capability of information processing and
can form a dynamic map that consists of an assembly of functional
modules. Second, the mnSOM combines supervised and unsupervised
learning algorithms: at the MLP-level, the network is trained by a
supervised learning algorithm, i.e., the back propagation at the MLP
module level, while the upper SOM level is described in an unsuper-
vised manner.

For the purposes of this study, we substituted the multilayer per-
ceptrons with RBF network modules.The usage of RBFs instead of the
MLPs adds the number of advantages,such as avoiding a problem of
local minima, while preserving the ability of the NN to form a dynamic
map. A radial basis function neural network (RBFN) is an artificial
neural network that uses radial basis functions as activation functions.
The typical RBFN architecture consists of three layers: an input layer,
a hidden layer of J basis functions, and an output layer of linear output
units. The activation values of the hidden units are calculated as the
closeness of the input vector xi to an I-dimensional parameter vector
f
j
i associated with hidden unit uj .

In a RBF network there are three types of parameters that need to
be chosen to adapt the network for a particular task: the center vectors
u, the output weights wj , and the RBF width parameters σ.
The variety of the training algorithms for RBFNs exists. One of the
possible training algorithm is gradient descent. In gradient descent

428

NN-based model for emotion recognition. . .

training, the weights are adjusted at each time step by moving them in
a direction opposite from the gradient of the objective function (thus
allowing the minimum of the objective function to be found).

The model of the main module of the proposed network represents
a modification of the conventional SOM, where each vector unit of the
conventional SOM is replaced by a functional RBF module. These
modules are arrayed in a lattice that represents the coordinates of the
feature map.

The architecture of the SOM of RBFs module has a hierarchical
structure: it consists of two levels, which we will call the RBF-level
and the SOM-level of the network. At the first level, the architecture
of our network represents k RBF- networks, which are the modifications
of the Poggio and Edelman network. Since each module represents a
certain ”functional feature” determined by the model architecture, the
SOM-level the SOM of RBFs represents a map of those features.

The proposed network solves an approximation problem in a high-
dimensional space. Recognizing of an object is equivalent to finding
a hyper-plane in this space that provides the best fitting to a set of
training data. The training data represents a vector with coordinates
of 2D projections of 3D objects, taken at each degree of rotation.

The architecture of the SOM of RBFs module has a hierarchical
structure: it consists of two levels, which we will call the RBF-level
and the SOM-level of the network. At the first level, the architecture
of our network represents k RBF- networks, which are the modifica-
tions of the Poggio and Edelman network.

The proposed network solves an approximation problem in a high-
dimensional space. Recognising of an object is considered to be equiva-
lent to finding a hyper-plane in this space that provides the best fitting
to a set of training data. The training data represents a vector with
coordinates of 2D projections of 3D objects, taken at each degree of

429

V. Albu

rotation.

Let xi denote the units of the input vector, o define the output of
each RBF-module, ukj define the RBF centres, σk

j define the variance,

wk
j define weights, and n to be the number of hidden units, where j

defines the jth hidden unit and k defines the kth RBF-module. Then
the conventional SOM algorithm can be rewritten as follows.
In the first step, the weights wk

j are defined randomly in the interval
[0 0.5]. In the evaluative process, we calculate all outputs for all of the
inputs in single RBF-unit according to the following rule:

o(x) =
n
∑

j=1

wjexp{
−(x− uj)

2

σj
2

} (1)

This calculation process is repeated for all of the RBF-units using the
same input x. After evaluation of all of the outputs for all inputs, the
errors for all the datasets are calculated:

Ek
i =

1

2
(y −

1

1 + e−o(x)
)
2

(2)

where y defines the desired output. Ek
i defines the error for the ith

dataset for the kth module. The desired output equals 1 for all the
RBF modules.

In the competitive process, the module that minimizes the error is
determined as the winner module.

In the cooperative process, the learning weights are calculated using
the neighbourhood function α, which decreases with the calculation
time.

α(ri) =
e

−(r
i
−rv)

2ξ2
j

∑n
i−1

e

−(r
i
−rv)

2ξ2
j

(3)

where ri denotes the position of the ith RBF-unit in the map space,
rv expresses the position of the module with the minimal error and ξ

430

NN-based model for emotion recognition. . .

is the parameter of the neighbourhood function. The neighbourhood
function area is decreased monotonically each epoch of learning.

In the adaptive process, all of the modules are updated by the back-
propagation learning algorithm:

∆wk
j = η∂Ek

i �∂wk
j (t− 1) (4)

and
wk
j (t) = wk

j (t− 1) + ∆wk
jα(ri) (5)

so (4) can be rewritten as follows

∆wk
j = η(y −

1

1 + e−o(x)
)(y −

1

(1 + e−o(x))2
)e

−(x−u
j
)
2

2σ2
j (6)

The centres of the RBF-units are updated according to the following
rules

∆ukj = η∂Ek
i �∂ukj (t− 1) (7)

and
ukj (t) = ukj (t− 1) + ∆ukjα(ri) (8)

i.e.,

∆ukj = η(y −
1

1 + e−o(x)
)(y −

1

(1 + e−o(x))2
)wj

x− uj

2σ2
j

e

−(x−u
j
)
2

2σ2
j (9)

The learning is repeated until all of the modules are updated. Training
continues until the network reaches a steady state.

5 Results and Discussion

In this work, we propose the NN architecture for emotion classification.
The input of the model is the real-time data, provided with the Kinect
camera (Fig.2).

The network output represents the activation map, the activation
of each module shows the belonging of the detected expression to one

431

V. Albu

Figure 2. The input of the RBF-SOM network: 87 key facial features,
captured by Kinect Microsoft Software.

of five basic emotions. For the purposes of this study, we selected five
basic emotions, which are locates on a square plane, divided into 25
parts. The winning module represent the most plausible emotion. This
approach allows defining the most plausible emotion or emotions (since
the most active module can be defined between two emotions). In this
paper, we used only five emotions, but the usage of a larger number of
emotion labels is also possible (Fig.3).

We described the properties of the proposed neural architecture for
hierarchical visual perceptual processing, composed of modules resem-
bling human visual system.By introducing this architecture, our model
appeared to be capable of performing recognition and classification of
simple emotions and creating a similarity map of these emotions.

From the point of view of emotion recognition system, current ap-
proach is close to the one proposed by Paul Ekman [2], but differs in
the type of machine learning techniques, equipment and the number
of emotions (eh utilises six basic emotions: anger, disgust, fear, hap-
piness, sadness, and surprise, while we use only five expressions: sad,
angry, neutral, happy, engaged).

The research, described in this work, constitutes the tiny part of the

432

NN-based model for emotion recognition. . .

Figure 3. The output of the RBF-SOM network: the activation map
describes the performance of the neural network architecture: the net-
works activated one of five basic emotions (black color refers to absence
of activation and the white color refers to active module). In this case,
the most active or winning module (marked with red square) is closer
to ”neutral” expression.

spacious area of visual object recognition. It includes the description
of main research in the domain of emotion recognition with the means
of computer vision system with the emphasis on the neural network
architectures. It could be further extended in order to add the number
of emotions and to implement different machine learning techniques.
An application example of this research is a camera system embedded
in a machine that is used frequently, such as an ATM or information
kiosk.

433

V. Albu

References

[1] A. Damasio. Descartes’ Error: Emotion, Reason, and the Human

Brain. Putnam Publishing, (1994).

[2] P. Erkman. Handbook of Cognition and Emotion. New York, NY:
John Wiley and Sons Ltd. (1999).

[3] W.M. Wundt. Classics in the history of psychology. .

[4] J.F. Cohn Foundations of human computing: facial expression and

emotion,ICMI 2006: Proceedings of the 8th international confer-
ence on Multimodal interfaces, ACM, New York, NY, USA. (2006),
pp. 233–238.

[5] Y.-L. Tian, T. Kanade, J. Cohn. Facial expression analysis. S. L.

[6] M. Meulders, P. D. Boeck, I. V. Mechelen, A. Gelman. Probabilistic
feature analysis of facial perception of emotions. Journal Of The
Royal Statistical Society Series C 54. (2005), pp. 781–793.

[7] B. Jiang, M. F. Valstar, M. Pantic. Facial Action Detection us-

ing Block-based Pyramid Appearance Descriptors. The proceedings
of the ASE/IEEE International Conference on Social Computing
(SocialCom 2012).

[8] T. Kohonen. Self-organizing maps. Berlin: Springer-Verlag.
(2001).

[9] K.Tokunaga, T. Furukawa. Modular network SOM. Neural Net-
works (2009), v.22, pp. 82–90.

Veaceslav Albu Received July 17, 2015

Institute of Mathematics and Computer Science

Academy of Sciences of Moldova

5 Academiei str., Chişinău, MD-2028, Moldova

E–mails: vaalbu@gmail.com

434

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Ambient intelligence in decision support

systems

Alexei Averkin

Abstract

The paper describes the basics of creation of a new gener-
ation of intelligent systems – ambient intelligence. We propose
the concept of the development of intellectual environment as
cognitive-regulatory meta-agent with the use of intelligent tech-
nology of decision making, getting a considerable amount of in-
formation from the sensors arranged in the form of wireless sensor
networks.

Keywords: ambient intelligence, wireless sensor networks,
cognitive agents

1 Introduction

The aim of the paper is to describe the new generation synergistic of
intelligent systems – ambient intelligence, as well as the development of
a new concept of the intellectual environment as cognitive-regulatory
meta-agent. We consider stages of the evolution of intelligent systems,
which led to appearance of the agent-oriented approaches, as well as the
main features of cognitive agents, and the key technologies of formation
of ambient intelligence. The basic architecture of ambient intelligence
is shown. We introduce the concept of ambient intelligence as artificial
agent, the ongoing process of cognitive-regulatory coordination with
the use of intelligent technologies, including natural language dialogue
with the people. We build the ontology of wireless sensor networks as
principal means in obtaining and processing information via ambient
intelligence.

c©2015 by A. Averkin

435

A. Averkin

Future prospects in research are related to the development of
logical-linguistic model of dialogue between the sensors of the sensor
network and the implementation of procedures of data mining, sensor
mining and knowledge discovery.

This work was carried out with the financial support of the Russian
Foundation for Basic Research, projects 14-07-00653 and 13-07-00893.

2 Evolution of Intelligent Systems

Stages of the development of intelligent systems can be displayed using
the chain of ”heuristic search – simple expert systems – hybrid intelli-
gent systems – intelligent network and multi-agent systems – intelligent
environment”. This chain reflects the leading trends of modern AI: the
integration of diverse technologies, distribution, agent orientation, an-
thropocentrism, in particular, modeling NON-factors, granulation of
information and transition to an anthropomorphic (granular) calcula-
tions [1-5].

Creation of the integrated intelligent systems is not just a union,
but a mutual adaptation and joint evolution of heterogeneous com-
ponents. Integration acts as a necessary condition for hybridization
[6]. Hybrid systems in AI consist of two or more dissimilar integrated
subsystems united under a general purpose or joint action (although
these subsystems can be of different nature and different description
languages). They use two or more different computer technologies. In
particular, the association of expert systems with databases and appli-
cation packages has led to the emergence of hybrid expert systems.

Soft computing [6,7] have become another important direction in
the development of hybrid intelligent systems with NON-factors [3,4].
In this methodology, three aspects of intelligent behavior – fuzzy infor-
mation processing, learning and adaptation in the evolutionary process
– are bound together, providing fuzzy production models in training of
the neural network.

Further development of the integrated and hybrid intelligent sys-
tems leads to the formation of synergistic intelligent systems, i.e. com-
plex, self-organizing, evolving systems, consisting of coherent and co-

436

Ambient intelligence in decision support systems

operating components. Creation of such systems requires the develop-
ment of synergetic methodology in artificial intelligence [1]. Specific
examples of synergistic intelligent systems are multi-agent systems of
different classes.

Agent is an open, active and goal-oriented system, which is capable
of forming its own behavior in fully defined environment. We can se-
lect classes of natural and artificial, physical and virtual, reactive and
intelligent agents [1]. If artificial intelligent agents are endowed with
their own motivations and are capable of forming their own goal (goal-
oriented agents), then they are called intentional. Otherwise, when the
artificial intelligent agents obtain goals from natural targeting agents,
they are often called reflex agents (which understand and realize the
goals and interests of users).

In addition, artificial intelligent agents are divided into cognitive,
deliberative and communicative. In the case of purely communicative
agents, inner world model is converted mainly to model communica-
tion patterns, consisting of participants, process of communication and
desired result. Deliberative (reasoning) agents are able to carry out
quite complex arguments of different types (for example, abductive,
deductive, by analogy) and to make decisions on their basis or perform
actions, changing environment.

Artificial cognitive agents have advanced knowledge of the subsys-
tem, which provides the construction of internal models of the external
environment, in particular, the models of other agents, as well as mod-
els of their own state.

3 Cognitive agents

The basic cognitive processes are processes of external world perception
and its generalized presentation, understanding of the laws of interac-
tion, behavior and training. They include resource allocation process
(in particular, attention), forecasting and planning behavior, forma-
tion of their own arguments about their own states and states of other
objects and agents.

Key features of cognitive processes that should be considered in

437

A. Averkin

the development of cognitive agents are the following: 1) cognitive
process is an open system, based on existing knowledge and perception
of current data; 2) cognitive process generates hypotheses, rather than
conclusions; these hypotheses require confirmation or refutation; 3)
cognitive process of the environment should not be separated from
the organization the agent’s actions (as an information process, local
changes in the environment or physical movement). Thus, the system
of artificial cognitive agent should monitor the environment and get
information from sensor subsystem.

Thus, the intelligent agent is the chain ”data-information-knowledge-
meta-knowledge”, i.e. support of baseline data, recycling information,
forming opinions, knowledge and plans for the construction of knowl-
edge about knowledge.

The implementation of this chain suggests formation of an artificial
cognitive agent with the following mechanisms of understanding: a)
links between objects or events, b) samples and examples of regulatory
or situational behavior; c) general situation.

At the same time, artificial cognitive agents should be able to com-
municate (to dialogue) with user in a limited natural language. Under
the dialog we understand a sequence of communicative acts between
a human and ICA, including the ability to change the role (”active-
passive” participant or ”speaker-listener” in the process of communi-
cation). Any dialogue involves the exchange of messages related to the
change in objectives and agent’s state. Dialogue with artificial human
agent includes both targeting and instructions, transmitted by human
agent, and feedback (when a person tells an agent to clarify the orig-
inal instructions), as well as information on the current situation or
information on achievement of the goal [8]. Dialogue can beorganized
in a variety of ways, in particular, by means of natural language (text
or voice).

In general, the status of a cognitive agent is determined by acqui-
sition, integration and use of diverse information from various sources,
including: 1) human user; 2) own database/agent’s knowledge; 3) sen-
sors [8].

438

Ambient intelligence in decision support systems

4 Ambient Intelligence

The concept of ”ambient intelligence” (”intellectual space”, ”intellec-
tual environment”), entered into use due to the specialists from Phillips
in 1998, is the enhanced physical environment, which incorporates tech-
nical devices, sensitive to the presence of people and responsive to this
presence. This implies recognition of users sensitivity, understanding
of their preferences and context, forecasting the behavior.

The term comes from the English words combinations Ambient In-
telligence and Smart Environments, and is a generic term Ambient In-
telligence (AmI). Under the Smart Environments we understand, first
of all, technical devices (sensors, actuators and computer network) that
support the establishment and functioning of this environment [9-11].

Ambient intelligence is a promising interdisciplinary information
and communication technology, generated at the intersection of cyber-
netics, artificial intelligence, computer science, cognitive science, activ-
ity theory, mechatronics, and ergonomics. It should be noted that we
are talking about a new generation of ”human-machines environment”,
which is usually studied in ergonomics.

Ambient intelligence (in a broad sense) is a new concept for the
implementation of interactions ”human-machines environment”, when
people are surrounded by intelligent and intuitive interfaces and built-
in objects of everyday life.

Integrated technology of intellectual environment should be trans-
parent, built in the surrounding reality, well-adapted, providing a
simple and convenient interaction ”human-machines” and ”human-
technique-human” function if there is the need [9].

Ambient intelligence, the populations of various technical devices
(sensors, actuators), and ”wired” network, which connects all of these
devices (”Internet of Things”) should naturally serve to support profes-
sional activities of people through the use of intelligent technologies. By
decreasing the amount of such artificial systems and devices, establish-
ing close relationships between them, and increasing their integration
into the real physical environment via the procedures like ”dissolve”
in this environment, we help the users to perceive only user-friendly

439

A. Averkin

interface with the environment. Thus, ambient intelligence (in the nar-
row sense) should be considered as a new round of development of
information technology synergies on the basis of artificial intelligence.

In this paper we propose the concept of ambient intelligence as
cognitive-regulatory meta-agent, which basic architecture is expressed
in the following form: ambient intelligence = a distributed system of
perception of physical and technical parameters of the environment
+ intelligent core + intelligent distributed system with impact on the
physical and technical environment. Cognitive-regulatory coordination
of meta-agent (when it interacts with the physical and technical envi-
ronment) is characterized by a pair of ”cognitive interval – level of
regulation”. Thus, the artificial meta-agent, which interacts with the
physical and technical environment to ensure comfortable conditions
for the activity of natural agents, as well as to monitor technical ob-
jects and support management decision-making, includes the following
main components:

1) tools of organizing and processing knowledge of reasoning, action
planning (ontology, logic, knowledge base, tools of data mining and
machine learning, natural language processing tools, intelligent decision
support systems, etc.);

2) artificial sensory systems (primary sensors and sensor networks,
vision systems, voice recognition systems, radio frequency automatic
identification RFID, satellite navigation system GPS or GLONASS,
etc.);

3) artificial tools of implementation impacts on the environment
(effectors, drives, mechatronic devices).

5 Distributed Sensor Systems: Sensor Net-

works

A crucial component of the artificial intelligent system environments
are sensors, forming a sensor network. Sensor network is a set of het-
erogeneous, distributed sensors, covering a large area, which interact
with each other in order to extract and aggregate information from in-

440

Ambient intelligence in decision support systems

dividual, local, and ”raw” data. The network is seen as a complement
to traditional technologies for collecting, processing and transmitting
information, and is usually limited to static sensors that receive and
process flows of homogeneous data.

In recent years, the creation of distributed systems of technical
perception using wireless sensor networks (WSN) [12] is one of the
priority directions in the development of information systems and in-
telligent technologies. WSN is a flexible, autonomous, self-organizing
network, which includes a variety of different heterogeneous sensors
and actuators, connected to each other by radio. The coverage area of
such network can range from few meters to tens of kilometers (by the
ability of relaying messages from one cell to another).

Wireless sensor networks have a number of important advantages:

- Comparative cheapness (in accordance with the ”core network
law”, the value of the sensor network is reduced by increasing the
number of its elements);

- Rapid installation of equipment at the facility;

- High survivability of the system (in case of failure of individual
elements the system continues to operate and provides the user
with the necessary information);

- Mobile technologies (having finished the kernel, you need to make
only minimal changes in software).

Each node of the sensor network may comprise various sensors to
monitor external environment, microcomputer and wireless communi-
cation module. This allows the device to measure, independently carry
out primary data for processing and communication with external in-
formation systems. The exchange of information between the nodes
of the system takes place through the ZigBee wireless protocol. This
protocol provides the possibility of implementing a wireless communi-
cation with low power consumption for a variety of applications that
perform the functions of monitoring and/or control.

441

A. Averkin

To realize the ambient intelligence paradigm the embedded soft
computing approach in wireless sensor networks was suggested. This
approach means a combination of embedded fuzzy logic and neural net-
works models for information processing in complex environment with
uncertain, imprecise, fuzzy measuring data. It is a generalization of
soft computing concept for the embedded, distributed, adaptive hybrid
systems of decision-making [13, 14]

The main part of our embedded soft computing and soft comput-
ing approaches is Smart Node (SN) model for WSN. The core of SN
is Fuzzy Engine that consists of three modules: knowledge base (a
set of fuzzy production rules), fuzzification and defuzzification mod-
ules (which transform numerical measurements in linguistic form and
vice-versa). The output of SN can approximate any function of input
parameters, e.g. when it is impossible or difficult to measure a pa-
rameter, it can be computed by SN with the use of special rules from
knowledge base. Similarly, special rules can be created for data fu-
sion, clusterization, aggregation, routing and power consumption. The
knowledge base of SN can be created as a result of knowledge acquisi-
tion from expert or by supervised neural network learning. Utilization
of knowledge in nodes can significantly improve the resource and energy
efficiency, i.e. by application-specific data caching and aggregation in
an intermediate node.

References

[1] V. B. Tarasov. From multi-agent systems to intellectual organiza-

tions: philosophy, psychology, computer science. – Moscow: Edi-
torial URSS, 2002. (in Russian).

[2] L. A. Zadeh. Toward a Theory of Fuzzy Information Granulation

and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy
Sets and Systems. – 1997. – Vol.90, pp. 111–127.

[3] A. S. Narinyani. NON-factors and knowledge engineering: from

the naive to the formalization of natural pragmatics. Proceedings

442

Ambient intelligence in decision support systems

of the IV-th National Conference on Artificial Intelligence (CAI-
94, Rybinsk, September 1994). V.1. – Tver: FIA, 1994. – pp. 9–18.
(in Russian).

[4] Artificial News Intelligence. – 2004. – N2. (in Russian).

[5] A. Bargiela, W. Pedrycz. Granular Computing: an Introduction.

– Dordrecht: Kluwer Academic Publishers, 2003.

[6] Fuzzy hybrid systems. Theory and Practice. / Ed. N. G. Yarushki-
noy. – Moscow: FIZMATLIT, 2007.

[7] L. A. Zadeh. Fuzzy Logic, Neural Network and Soft Computing.

Communications of the ACM. – 1994. – Vol.37, N3. – pp. 77–84.

[8] V.B. Tarasov, A.P.Kalutsky, M.V. Svyatkina. Granular, fuzzy and

linguistic ontology to ensure mutual understanding between cog-

nitive agents. Open semantic technologies of intelligent systems.
Materials II-nd International Scientific and Technical Conference
(Minsk, BSUIR, 16-18 February 2012). – Minsk: BSUIR, 2012. –
pp. 267–278. (in Russian).

[9] E. Aarts, R. Harwig, M. Schuurmans. Ambient Intelligenc. The

Invisible Future: The Seamless Integration of Technology into Ev-

eryday Life / Ed. by P. J. Denning. – New York: McGraw-Hill
Companies, 2001.

[10] Handbook of Ambient Intelligence and Smart Environments. Ed.
by H. Nakashima, H. Adhajan and J. C. Augusto. – New York:
Springer Verlag, 2010.

[11] Handbook of Research on Ambient Intelligence and Smart Envi-

ronments: Trends and Perspectives. / Ed. by N.-Y. Chong and F.
Mastrogiovanni. – New York: IGI Global, 2011.

[12] W. Dargie, Ch. Poellabauer. Fundamentals of Wireless Sensor

Networks: Theory and Practice. – New York: John Wiley and
Sons, 2010.

443

A. Averkin

[13] A. N. Averkin, O. P. Kuznetsov, A. A. Kulinich, N. V. Titova.
Decision-making support in weakly structured subject domains:

Analysis of situations and evaluation of alternatives. Journal of
Computer and Systems Sciences International, Volume 45, Issue
3, pp. 469–479.

[14] A. N. Averkin, A. G. Belenki. Soft Computing in Wireless Sensors

Networks. In EUSFLAT Conf. (1)(2007), pp. 387–390.

Alexei Averkin Received July 29, 2015

Institute of Computer Science,

Russian Academy of Sciences

E–mail: averkin2003@inbox.ru

444

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Petri nets to model disaster prevention∗

Inga Titchiev

Abstract

The aim of this article is to form preliminary concepts of sim-
ulation system by means of Petri nets for independent disaster
prevention organizations as a tool to heighten consciousness of
potential damage used to simulate evacuation behavior of inhab-
itants in a case of disaster.

Keywords: Petri nets, disaster, modeling.

1 Introduction

When a social disaster [3, 4] happens, it can lead to other accidents
and catastrophes and it may be necessary to keep human health and
in some cases, human life. The best method for protecting human
life is to smoothly evacuate inhabitants to safe places until danger
has passed. In order to determine important features related to the
successful evacuation of people, it is proposed using of formal method
like Petri Net[1, 2]. Petri-net is a mathematical model for expressing
a sequentially, asynchronous and parallel system. They have intuitive
graphical representation and high power of modeling.

A Petri Net is a bipartite graph with two types of nodes: places and
transitions interconnected by arcs, which connect only different types
of nodes.

In Petri nets, the process dimension specifies which actions must be
performed and in what order. For modeling people flows by means of
Petri Nets, the transition will be done directly: actions will be modeled
by transitions, the place where the people are will be modeled by places,
people will be modeled by tokens and dependencies by arcs.

c©2015 I. Titchiev
∗ This work was supported by NATO.NUKR.SFPP project Ref. Nr. 984877

445

I. Titchiev

2 Petri Nets. Definition.

As it was mentioned above, Petri Net is constituted by places, arcs,
transitions and tokens. If all conditions are fulfilled (in places), tran-
sition will work (it is called ”firing”), token is eliminated from input
place, and is added to output place. Dynamic action is expressed when
token moves between input place and output place. Formally we have
the following definition and rule:

Definition 2.1 The 4-uple PN=(P, T, F, W) is a Petri Net, where
P is a set of places, T is a set of transitions, F is a set of arcs, W is a
weight of arcs.

The firing of a transition is possible according by the firing rule:

1. Applicability rule

A transition can fire if in all its input places there are at least as
many tokens as is the weight of corresponding arcs.

2. Calculation rule

If a transition is possible, after firing it removes tokens from input
places and adds them to output places.

2.1 Modeling using Petri Nets

Suppose that there is a two-floors building as it is specified in Figure
1. M1-M12 are rooms, M11-M121 are the doors. Petri Net of this
building, the first floor is given in Figure 2.

Rooms and doors are modeled using places M1-M81, movements
from the rooms to the doors or from the doors into the rooms are
modeled by transitions t1-t14. Each inhabitant is modeled by one
token, respectively. The people are accumulated in the places. The
transfer function is used, which takes into account the time spent in
the queue (moving time of a human in the room) and the density and
flow rate.

In its turn, the flow rate in every room depends on the flux density
on it. Flow rate at the rooms following after the first one, it depends
on the flow rate, which is expressed in dependence of the intensity of

446

Petri nets to model disaster prevention . . .

Figure 1. Building plan

flux in the previous rooms. Time of evacuation is directly proportional
to the length of the way and inversely proportional to the flow rate of
the people in this way.

For the simulation of evacuation time of people from buildings it is
necessary to do the following steps:

1. Prepare a building plan.

2. Translate building plan in terms of Petri nets.

3. Set the transition conditions according to a mathematical model.

4. Perform initial marking (define vectors of probability distribution
of having people in rooms).

5. Run the simulation program for calculating the estimated time
of evacuation.

The final goal of the Petri net is the automatic analysis of the properties
of modeling system, such as boundedness, liveness, deadlock, safeness.

Petri net, used for modeling of people evacuation, must fulfill the
following properties:

447

I. Titchiev

Figure 2. Petri net representing first flor a)

1. it must be bounded (a finite set of states, leading to a finite
number of steps necessary for evacuation).

2. it must be safe (transitions do not influence each other, each door
and room works independently of one another).

3. it must be conservative (number of people is constant, do not
appear new people, they are accumulated in the last place).

4. it must be without deadlock (dead transitions do not occur, it
means that persons who are unable to evacuate must not appear).

3 Conclusions

In this study, a method of Petri-net was proposed for simulation sys-
tem that represents emergency evacuation of people in case of social
disaster. This method allows checking such properties as boundedness,
liveness, deadlock, safeness.

448

Petri nets to model disaster prevention . . .

References

[1] O.Pastravanu. Aplicatii ale retelelor Petri in studierea sistemelor

cu evenimente discrete. Ed. Gh. Asachi, Iasi, 2002, 238 p.

[2] J. L. Peterson. Petri Net Theory and The Modeling of Systems,
Prentice Hall, 1981.

[3] Takashi Minamoto, Yoshifumi Nariyuki, Yasuhiro Fujiwara, At-
sushi Mikami. Development of Tsunami refuge PETRI-NET sim-

ulation system utilizable in independence disaster prevention orga-

nization, The 14th World Conference on Earthquake Engineering
October 12-17, 2008, Beijing, China.

[4] O.Tsujihara, K. Terada, T. Sawada. Development of simulation

system of spreading fire occurring simultaneously in many places

in an earthquake using Petri-net. Journal of Applied Computing
in Civil Engineering 14:11, 2005, pp. 129–136.

Inga Titchiev, Received July 12, 2015

Inga Titchiev

Institute of Mathematics and Computer Science

Address 5, Academiei street, Chisinau, Republic of Moldova

Phone: 0 22 73 81 30

E–mail: inga.titchiev@gmail.com

449

Proceedings of the Workshop on Foundations of Informatics

FOI-2015, August 24-29, 2015, Chisinau, Republic of Moldova

Table of contents

Part 1. Theory of computing

Răzvan Diaconescu

Structuring of Specification Modules (Invited paper) 4

Artiom Alhazov, Rudolf Freund, Petr Sośık

Small P Systems with Catalysts or Anti-Matter Simulating
Generalized Register Machines and Generalized Counter
Automata . 14

Bogdan Aman, Gabriel Ciobanu

BioMaxP: A Formal Approach for Cellular Ion Pumps 38

Alexey Chentsov, Mykola Nikitchenko

Institution for Pure First-Order Composition-Nominative Logic . . 50

Part 2. Theoretical aspects of software system develop-

ment

Volodymyr G. Skobelev, Ievgen Ivanov, Mykola Nikitchenko

Analysis of Nominative Data Sets Structure . 65

Part 3. Natural computing

Gheorghe Păun

Natural Computing: Achievements, Dreams, Limits (Extended
Abstract) (Invited paper) . 78

Artiom Alhazov, Lyudmila Burtseva, Svetlana Cojocaru,

Alexandru Colesnicov, Ludmila Malahov

HPC patterns based implementations of P systems based solutions
of hard computational problems . 82

Artiom Alhazov, Lyudmila Burtseva, Svetlana Cojocaru,

Alexandru Colesnicov, Ludmila Malahov

450

Solving Problem of Graph Isomorphism by Membrane-Quantum
Hybrid Model . 89

Part 4. Theoretical issues in automated reasoning

Alexander Lyaletski

Admissibility, compatibility, and deducibility in first-order sequent
logics . 102

Part 5. Logics in informatics

Ioachim Drugus

Universics: an Axiomatic Theory of Universes for the
Foundations. Part 1. Foundational Completeness 118

Ioachim Drugus

Universics: an Axiomatic Theory of Universes for the
Foundations. Part 2. Well-Founded Universes and An Algebraic
Set Theory Based on Universics . 142

William J. Greenberg

Extensionality, Proper Classes, and Quantum Non-Individuality . 154

Alexandre Lyaletsky

Fundamental theorems of extensional untyped λ-calculus
revisited . 168

Mykola Nikitchenko, Stepan Shkilniak

Semantic Properties of Logics of Quasiary Predicates 180

Oksana Shkilniak

Modal Logics of Partial Predicates without Monotonicity
Restriction . 198

451

Part 6. Formal languages and automata

Andrei Micu, Adrian Iftene

Communicative automata based programming. Society
Framework . 213

Volodymyr V. Skobelev, Volodymyr G. Skobelev

On some trends in finite automata theory . 229

Part 7. Semantic technologies

Vadim Ermolayev

The Law of Gravitation in Ontology Dynamics (Invited paper) . . 246

Part 8. Natural language processing

Artiom Alhazov, Svetlana Cojocaru, Constantin Ciubotaru,

Alexandru Colesnicov, Ludmila Malahov, Mircea Petic

Word formation problems in Romanian and their solving by
P systems . 268

Zinaida Apanovich, Alexander Marchuk

Experiments on cross-language identity resolution 283

Daniela Gı̂fu

Contrastive diachronic study on Romanian language 296

Part 9. Cryptography and security

Eugene Kuznetsov

About Vigenere cipher modifications . 312

A.A. Moldovyan, D.N. Moldovyan, V.A. Shcherbacov

Stream Deniable-Encryption Algorithm Satisfying Criterion
of the Computational Indistinguishability from Probabilistic
Ciphering . 318

452

N.A. Moldovyan, A.V. Shcherbacov, V.A. Shcherbacov

On some applications of quasigroups in cryptography 331

Part 10. Databases, artificial intelligence

Ion Bolun, Alexandru Costas

Computer Simulation of Multi-optional Decisions 342

Dmitriy Bui, Anna Puzikova

Axiomatics for multivalued dependencies in table databases:
correctness and completeness . 361

Sergiu Chilat

A Prediction System Based on Fuzzy Logic . 377

Aleksey Senchenko

On preservation of keys in table algebra . 391

Mustafa Tinkir, Burcu Doganalp, Serkan Doganalp

Human Resource Selection Process by Using Various Fuzzy Logic
Techniques . 403

Part 11. Neural networks, soft computing

Veaceslav Albu

Neural network based model for emotion recognition 423

Alexei Averkin

Ambient intelligence in decision support systems 435

Inga Titchiev

Petri nets to model disaster prevention . 445

Table of contents . 450

453

 HistoryItem_V1
 StepAndRepeat

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 5.827 x 8.268 inches / 148.0 x 210.0 mm
 Sheet orientation: best fit
 Layout: scale to rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 1
 1
 0.9700
 0
 0
 1
 0.0000
 1

 D:20150806195901
 595.2756
 a5
 Blank
 419.5276

 Best
 472
 153
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 StepAndRepeat

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 5.827 x 8.268 inches / 148.0 x 210.0 mm
 Sheet orientation: best fit
 Layout: scale to rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 1
 1
 0.9700
 0
 0
 1
 0.0000
 1

 D:20150806200017
 595.2756
 a5
 Blank
 419.5276

 Best
 472
 153
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 StepAndRepeat

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 5.827 x 8.268 inches / 148.0 x 210.0 mm
 Sheet orientation: best fit
 Layout: scale to rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 1
 1
 0.9500
 0
 0
 1
 0.0000
 1

 D:20150806200311
 595.2756
 a5
 Blank
 419.5276

 Best
 472
 153

 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

